
9

On the Benefits of Providing Versioning Support for End Users:
An Empirical Study

SANDEEP K. KUTTAL, ANITA SARMA, and GREGG ROTHERMEL,
University of Nebraska-Lincoln

End users with little formal programming background are creating software in many different forms, in-
cluding spreadsheets, web macros, and web mashups. Web mashups are particularly popular because they
are relatively easy to create, and because many programming environments that support their creation are
available. These programming environments, however, provide no support for tracking versions or prove-
nance of mashups. We believe that versioning support can help end users create, understand, and debug
mashups. To investigate this belief, we have added versioning support to a popular wire-oriented mashup
environment, Yahoo! Pipes. Our enhanced environment, which we call “Pipes Plumber,” automatically re-
tains versions of pipes and provides an interface with which pipe programmers can browse histories of pipes
and retrieve specific versions. We have conducted two studies of this environment: an exploratory study and
a larger controlled experiment. Our results provide evidence that versioning helps pipe programmers create
and debug mashups. Subsequent qualitative results provide further insights into the barriers faced by pipe
programmers, the support for reuse provided by our approach, and the support for debugging provided.

Categories and Subject Descriptors: D2.9 [Software Engineering]: Management—Software configuration
management; D2.5 [Software Engineering]: Testing and Debugging—Debugging aids; H1.2 [Models and
Principles]: User/MachineSystems—Human factors; human information processing; H5.2 [Information
Interfaces and Presentation]: User Interfaces—Evaluation/methodology

General Terms: Human Factors

Additional Key Words and Phrases: End-user software engineering, versioning, Mashups, Yahoo! Pipes,
reuse, debugging, programming barriers

ACM Reference Format:
Sandeep K. Kuttal, Anita Sarma, and Gregg Rothermel. 2014. On the benefits of providing versioning
support for end users: An empirical study. ACM Trans. Comput.-Hum. Interact. 21, 2, Article 9 (February
2014), 43 pages.
DOI: http://dx.doi.org/10.1145/2560016

1. INTRODUCTION

End-user programming has become a widespread phenomenon. Large numbers of end
users (i.e., nonprofessional programmers) create software applications for their own
needs by using a variety of programming tools and environments such as spreadsheets,
Scratch, Labview, web macros, and web mashup environments [Scaffidi et al. 2005].
While these domains support programming (e.g., macros in spreadsheets, linking code
blocks in Scratch), they lack basic software engineering support such as debugging

This work was supported in part by the AFOSR through grant FA9550-10-1-0406, and by the NSF through
grants IIS1110916 and IIS1314365 and to the University of Nebraska-Lincoln.
Authors’ addresses: Sandeep K. Kuttal, 103A Avery Hall, Computer Science and Engineering Department,
University of Nebraska-Lincoln, Lincoln, NE 68588; Anita Sarma and Gregg Rothermel, 362 Avery Hall,
Computer Science and Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1073-0516/2014/02-ART9 $15.00

DOI: http://dx.doi.org/10.1145/2560016

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

http://dx.doi.org/10.1145/2560016
http://dx.doi.org/10.1145/2560016

9:2 S. K. Kuttal et al.

help, testing support, or variation management—support commonly available in
professional development environments. Researchers in end-user programming focus
on using software engineering principles and techniques to provide such support, with
the aim of helping end users in their efforts [Ko et al. 2011].

One particular software engineering principle relates to the need to support product
families (version support) and has been widely acknowledged in the professional soft-
ware development community as essential for code understanding, change traceability,
debugging, and maintenance [Tichy 1985]. Version support allows developers to browse
past and alternative versions of a resource, determine how these versions differ from
one another, and choose a particular version or revert back to a previous version.

In a domain study of experts (scientists), Jones and Scaffidi [2011] observed that
there is a need for version control to enhance the maintainability and reuse of visual,
domain-specific languages. In end-user programming domains, however, support for
versioning is typically unavailable.

We posit that end users are likely to benefit from versioning support because they
often tend to learn from examples [Lieberman et al. 2006] that they find in repositories.
They also tend to “debug their programs into existence” [Rosson and Carroll 1993];
that is, they investigate different alternative strategies and backtrack their changes to
arrive at a solution. Moreover, end users tend to opportunistically create their programs
[Brandt et al. 2009], exploring different aspects of the programs and solutions on an
as-needed basis. Versioning support can help users in their explorations, including
explorations through versions in the repository as well as explorations among their
own changes.

In this article, we investigate whether and how versioning support can help end-user
programmers in their program creation and debugging tasks. We focus on web devel-
opment and web mashups. Web mashups are applications that combine data, function-
ality and interface elements from two or more sources to create new services. Mashups
are popular among end users because of their role in three primary trends involving
the Web 2.0 paradigm, where end users (1) create dynamic content for the web, (2) build
situational software applications [Huang et al. 2008], and (3) build on and share their
applications through publicly hosted repositories [Jones and Churchill 2009].

Users programming mashups do not need to write scripts or programs; instead,
they can take advantage of visual, black-box–oriented programming environments.
Examples of such environments include IBM mashup maker,1 JackBe,2 Deri pipes,3
Apatar,4 xfruit,5 and Yahoo! Pipes.6 Among these programming environments, Yahoo!
Pipes has been one of the most popular, and has drawn a large community of users.
Yahoo! Pipes is a commercial mashup programming environment that allows users to
aggregate and “mashup” content from around the web. In its first year (February 2007
through 2008), more than 90,000 developers created individual pipes on the Yahoo!
Pipes platform, and pipes were executed over 5,000,000 times each day [Jones and
Churchill 2009].

Mashup programming environments provide central repositories to end users where
they can execute and store their mashups. However, these environments do not provide
facilities by which users can keep track of the versions or provenance of the mashups
they create. For example, in a study of the Yahoo! Pipes repository, it was found that

1IBM Mashup Maker: http://www.ibm.com/software/info/mashup-center/.
2Jackbe: http://www.jackbe.com/.
3Deri Pipes: http://pipes.deri.org/.
4Apatar: http://apatar.com/.
5xfruit: http://xfruit.com.
6Yahoo! Pipes: http://pipes.yahoo.com/pipes/.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

http://www.ibm.com/software/info/mashup-center/
http://www.jackbe.com/
http://pipes.deri.org/
http://apatar.com/
http://xfruit.com
http://pipes.yahoo.com/pipes/

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:3

43% of pipes submitted are just variations of previously submitted pipes, indicating
that authors may be using the public repository as a private repository to manually
store versions of their pipes containing incremental changes [Stolee et al. 2011].

Furthermore, as noted earlier, backtracking and investigating alternative scenarios
are an integral part of debugging into existence—a programming paradigm that is
popular with end users. Most mashup programming environments, including Yahoo!
Pipes, however, cannot represent alternative exploration paths as branching histories,
forcing users to rely on memory to compare scenarios. In a study of end-user mashup
programmers, it was observed that all participants backtracked multiple times while
creating mashups, either because they had alternative ideas or wished to return to
some previous successful state [Cao et al. 2010b]. The authors also observed that
participants spent 76.3% of their time in debugging alone while developing mashups
[Cao et al. 2010a].

Motivated by the studies just described, we are investigating the use of versioning
in mashup programming environments. We conjecture that the addition of versioning
support to these programming environments will be useful in several ways, includ-
ing (1) helping mashup programmers create and reuse mashups, (2) helping mashup
programmers understand the evolution of mashups, (3) helping mashup programmers
backtrack to successful states and explore alternative ideas, and (4) helping mashup
programmers debug mashups.

To investigate this conjecture, we have added versioning support to Yahoo! Pipes.
The primary reasons for selecting Yahoo! Pipes include its popularity, the fact that it
is available for free, the availability of a large repository of pipes [Jones and Churchill
2009], and the fact that its data can be captured and manipulated by external sys-
tems. Our extension to Yahoo! Pipes, which we call “Pipes Plumber,” keeps version
histories for mashups automatically. This allows users to utilize the advantages of ver-
sioning without needing to be aware of the underlying functions known to professional
programmers such as check-in, check-out, and so forth.

To explore the potential cost and benefits of our versioning support, we conducted two
user studies. Our first study [Kuttal et al. 2011b], an exploratory, think-aloud study,
involved a version of the Yahoo! Pipes environment augmented with basic configura-
tion management functionality and a simple interface. This study of nine participants
(primarily computer science students) showed that the versioning support helped them
create mashups more efficiently.

Subsequently, we extended our versioning support by providing additional user in-
terface assistance intended to help users debug faulty mashups. We then conducted
a controlled experiment involving participants who do and do not have formal pro-
gramming training and experience, studying questions related to the creation, and
debugging of pipes [Kuttal et al. 2011a]. Our experiment results confirm that both
treatment groups of participants can create pipes more effectively and efficiently with
the aid of versioning support, and they can also debug pipes more effectively.

This article presents both of the foregoing studies and then augments this presen-
tation with an extensive qualitative analysis of our data. Our results suggest that
users had difficulty comprehending the state of pipes and their feedback (related to
understanding barriers) and how to correctly use the modules provided by Yahoo! Pipes
(related to use barriers). The availability of a history of evolution and the state of the
program in past versions helped ease these barriers. Furthermore, when users knew
that their changes would not be lost (because of automatic versioning), they were less
risk averse and explored more alternative ideas. Another advantage of versioning was
the fact that when debugging, users knew which strategies they had already followed
and did not redo their failed strategies. Finally, versioning helped participants who had
and did not have formal programming experience, and we did not find any significant
differences between these two types of users.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:4 S. K. Kuttal et al.

Fig. 1. Yahoo! Pipes interface.

The remainder of this article is organized as follows: Section 2 provides background
information. Section 3 describes our Pipes Plumber extension to Yahoo! Pipes and its
interface. Section 4 provides details on the setup and results observed in both studies.
Section 5 provides our qualitative analysis of the two studies. Section 7 discusses
related work. Section 8 concludes and discusses future work.

2. YAHOO! PIPES

Yahoo! Pipes7 is one of the most popular mashup creation environments available and
is used both by professional and end-user programmers. Yahoo! Pipes is a web-based
visual programming environment introduced by Yahoo! in 2007 with the intent of en-
abling its users to “rewire the web.” As a visual programming environment, Yahoo!
Pipes is well suited to representing the solutions to dataflow based processing prob-
lems [Jones and Churchill 2009]. Yahoo! Pipes “programs” combine simple commands
together such that the output of one acts as the input for the other. The Yahoo! Pipes
engine also facilitates the wiring of modules together and the transfer of data between
them.

Figure 1 shows the interface of the Yahoo! Pipes environment and the various com-
ponents of that interface. The pipe displayed in the figure takes an RSS feed from
Reuter’s News as input and then filters the news based on input parameters supplied
by the user (by default, sports). It then converts the titles of all the news feeds from
English to Greek, and displays only the first seven results. The Yahoo! Pipes envi-
ronment consists of three major components: canvas, library (list of modules), and
debugger. The canvas is the central area where a user creates a pipe. The library is
located to the left of the pipe editor and consists of various modules that are categorized
according to functionality. Users drag modules from the library and place them on the

7Yahoo! Pipes: http://pipes.yahoo.com/pipes/.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

http://pipes.yahoo.com/pipes/

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:5

Table I. Comparison of Features of Existing CM Systems to Features Available in Pipes Plumber

Features CM Systems Our System

Versioning unit File level Pipe level
Differencing Text level Module level
Deltas Add, delete, modify Add and delete
Versions created On commit On save/cloning of pipe
Browsing Undo or select version Undo, redo or select from list view
Tag Baseline/tags Run/tags
Merge Implemented Future work

canvas, then connect them to other modules as needed. The debugger helps users check
the runtime output of specific modules including the final output module (in Figure 1
the debugger window displays the output from the module Fetch Feed).

Pipes programmers create their pipes using the visual interface on the client side.
When they save a pipe, it is encoded in JSON format and sent to the Yahoo! Pipes
server, which is where all pipes are saved and executed. Programmers may also “clone”
pipes that are available in the repository, in order to reuse them in new contexts.

Input to a pipe can be HTML, XML, JSON, RDF, RSS feeds, as well as many other
formats. Similarly, pipe output can be RSS, JSON, KML, and other formats. The inputs
and outputs between modules are primarily RSS feed items. RSS feed items consist of
parameters and descriptions. Yahoo! Pipes modules provide manipulation actions that
can be executed on these RSS feed parameters. In addition to items, Yahoo! Pipes also
allows datatypes like url, location, text, number, and date-time to be defined by users.

3. PIPES PLUMBER

We now discuss the approach we use to provide versioning capabilities for Yahoo! Pipes,
including the features we provide, our system architecture, and the interface used.

3.1. Versioning Features

In the world of professional software development, versioning support is provided by
Configuration Management (CM) systems. Most CM systems built for professionals
(e.g., CVS, SVN, Git) require them to learn specific commands and concepts. Because
end users do not have any formal training with these systems or the associated concepts,
using these systems imposes additional cognitive load on them. Moreover, end users
tend to program opportunistically and debug their programs into existence; hence, they
iteratively backtrack and investigate alternative scenarios. Most mashup programming
environments, however, including Yahoo! Pipes, do not represent prior versions or
alternative exploration paths as branching histories, which forces users to rely on
memory to compare scenarios. This motivated us to attempt to create a versioning
system that could automatically retain version histories for mashups, allowing users
to utilize the advantages of versioning without needing to understand the mechanics
of underlying versioning operations.

To achieve versioning support in Yahoo! Pipes, we considered each of the version-
ing features available in professional CM systems and created appropriate analogous
features. Table I summarizes the results, which we elaborate on next.

—In most CM systems, the versioning unit is a file. There is no concept of files in Yahoo!
Pipes; the smallest executable unit is a pipe which is checked in (saved) or checked
out (viewed) by pipe programmers. Thus, we chose to use individual pipes as our
versioning unit.

—In CM systems, the differences between two versions of files are calculated at the text
level. Pipes, in contrast, consist of modules and wires. Pipes programmers “program”

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:6 S. K. Kuttal et al.

by adding or deleting modules. Thus, we chose to calculate the differences between
pipes at the module level.

—In CM systems, because differencing is done at the text level, deltas for a file can be
lines of code added, deleted, or modified. As mentioned before, we support differencing
of pipes at the module level. This leads to a clear choice of treating modules (added
or deleted) as deltas.8

—In CM systems, a version is created by a professional developer on each commit,
which he or she deliberately performs on major changes. Our objective is to integrate
versioning into the Yahoo! Pipes environment, while requiring little effort on the part
of end users to learn about versioning features. End users also purposefully save their
pipes to incorporate changes. Thus, we automatically create versions when users save
or clone their pipes so that they need not apply extra effort to create versions.

—CM systems allow developers to browse different versions of a file by using commands
to select some specific version. Such commands may increase the cognitive load for
end users; thus, we enable browsing using customized widgets. With these widgets,
users can perform various activities like undo, selection of a version (as in CM
systems) or redo (an additional feature).

—Typically, CM systems allow developers to tag the development tree, by marking
significant versions as baselines for retrieval and deployment. In the Yahoo! Pipes
environment, a user who believes that his or her pipe is complete will run the pipe to
check the results. We use this to facilitate the automatic creation of baselines. When
a user runs a pipe, we tag that version as a baseline. In addition to baselines, in our
environment, we find other forms of tags of systems useful, such as the number of
results returned and the success or failure of the run. We also tag the user’s tested
versions of pipes for debugging.

—CM systems provide merge facilities to let programmers merge versions; this facil-
itates collaboration among different professionals. We do not yet support merging,
but this capability could be added to our system in the future.

3.2. System Architecture

To implement versioning support, rather than create an add-on for a specific browser,
we decided to create a proxy wrapper. This proxy wrapper intercepts the JSON code
(pipe) that is transmitted between the user’s client running in their browser and the
Yahoo! Pipes server. This allows “Pipes Plumber” to be operational for most web
browsers (including Internet Explorer, Chrome, Firefox, and Safari).

Figure 2 presents our system architecture. We use a proxy server (Squid 3.1.49)
to manage communications between the client (web browser) and the Yahoo! Pipes
server. Using the Internet Content Adaptation Protocol (ICAP10), a proxy wrapper
intercepts the request and response messages exchanged between a client and the
Yahoo! Pipes server. When the user utilizes the User Interface (UI) of Yahoo! Pipes,
the response related to the UI is redirected to the proxy wrapper. The proxy wrapper
modifies the response messages it receives by inserting “widgets” related to versioning
and debugging into the UI before delivering the message to the client.

Our proxy wrapper intercepts user events (e.g., save or run) and message contents
and based on these, creates and stores versions in a MySQL database, which serves

8We do record modifications as we save versions in the repository; however, the listing of modules that we
present to the user does not contain metadata related to such modifications.
9Squid: http://www.squid-cache.org/Versions/.
10ICAP: http://www.icap-forum.org/.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

http://www.squid-cache.org/Versions/
http://www.icap-forum.org/

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:7

Fig. 2. Versioning support architecture.

as our versioning repository.11 When a user saves a pipe, a new version of the pipe
is created in the repository. Versions are created in chronological order (e.g., V1, V2,
V3, . . . , Vn) in the sequence of saves. Each version is composed of the set of modules
added to the canvas by the user. Each version also keeps track of its parent. When
the user requests a particular version of a pipe from the Pipes Plumber interface, the
requested version is selected from the repository. Hence, each version of a pipe can be
viewed, edited, or run using the Pipes Plumber interface.

To illustrate the process, consider a user-based scenario. Suppose Sally wants to
create a pipe using the Yahoo! Pipes environment, but she also wants the benefits of
versioning. She connects with our proxy server and sends a request for the Yahoo! Pipes
interface to the Yahoo! Pipes server. When the response comes back from the server,
it comes through the proxy server where the proxy wrapper adds our widgets to the
Yahoo! Pipes interface. Hence, Sally views the Pipes Plumber interface and is ready to
use our versioning support in the Yahoo! Pipes environment.

Suppose Sally begins to create a pipe to search for movies played in theaters near a
specific location. Once her task is done, she saves the pipe. As soon as she saves her pipe
a save message (POST) is sent from the client machine to the Yahoo! Pipes server. Our
proxy wrapper intercepts this message and saves the JSON contents from the message
body as a version in the central repository. Hence, the first save of Sally’s pipe creates
version V1 in the central repository. Each time Sally adds additional functionalities
to the pipe (such as checking reviews or displaying posters of a movie), and later
saves or clones her pipe, corresponding versions are saved in the central repository, in
chronological order. (Note: the Yahoo! Pipes repository retains only the latest contents
of the pipe; earlier versions are all saved by our system.)

Given the foregoing, if Sally wishes to retrieve a previous version V2 of a pipe, she
can achieve this using the Pipes Plumber interface. She selects version V2, and this
version is drawn from the local repository and sent to the Yahoo! Pipes server, where
she can access or execute it.

3.3. Interface

The UI of Pipes Plumber adds four widgets to the Yahoo! Pipes client interface (see
Figure 3). These widgets are (1) Undo, (2) Redo, (3) Tested, and (4) History of Pipe.
The first two widgets, Undo and Redo, are buttons that allow users to browse between

11This approach provides an initial prototype sufficient for use in studying versioning. The database could
easily be replaced, however, by an actual versioning system such as git; this would require only that the

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:8 S. K. Kuttal et al.

Fig. 3. Pipes Plumber interface.

consecutive versions of a pipe. Undo renders the previous version, while Redo renders
the next version. The third widget, Tested, is a button that allows users to indicate
that they have confidence in their pipe’s correctness.

The fourth widget, History of Pipe, displays the modules added or removed for a
pipe, per version, so that users can view the differences between versions. The History
of Pipe widget, implemented as a drop-down list, allows a user to select a desired
version from the list of available versions of the pipe. At present, the History of Pipe
list presents versions in chronological order, and this may mask cases in which a
version is actually derived from some much older version (e.g., V8 from V3). While we
might be able to address this by employing graphical representations of the versioning
history, initially we have addressed this by displaying further information on version
provenance in tooltip boxes that appear when the pipe programmer hovers over a given
version (Figure 3). To better describe the local history of pipes in terms of states and
actions, we also provide textual descriptions of the contents of the versions.

In Yahoo! Pipes, debugging is largely performed by observing the runtime behavior of
an executed pipe. To help users debug, we color code the version history in the History
of Pipe list with execution results so that users can distinguish between successful
pipe runs, unsuccessful pipe runs, and pipes that users consider to be “tested.” Versions
highlighted in grey (in Figure 3, the menu item labeled “BASELINE”) are versions that
were successfully executed (the pipe returns nonnull results). The numbers of results
returned during that particular run are also shown. Orange (item labeled “ERROR
(No Results)”) signifies that a pipe execution returned no results, a probable indication
of an error. Green (items labeled “Tested”) indicates that the pipe programmer has
confidence that a version is operating correctly, a status that can be applied by using
the Tested button in our interface.

proxy wrapper issue commands appropriate to that versioning system. The implementation can also be
broadened if services like Yahoo! Pipes were to incorporate a versioning tool into their system.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:9

4. EMPIRICAL STUDIES

We have conducted two user studies. The first, an exploratory study, involved nine
participants and focused on pipe creation and understanding tasks in the absence and
presence of versioning support. The second study, a controlled experiment, involved
24 participants, and focused on pipe creation and debugging tasks in the absence and
presence of versioning support.

4.1. Study I (Exploratory Study): Versioning for Creation and Understanding

Our first study addresses the following research questions:

—RQ1: To what extent does versioning allow mashup programmers to effectively and
efficiently perform tasks related to mashup creation?

—RQ2: To what extent does versioning help mashup programmers understand complex
third-party mashups?

4.1.1. Pipes Plumber Platform. For this study, we added basic versioning facilities in the
form of “undo”, “redo” and “History of Pipe” widgets to the Yahoo! Pipes interface as
described in Section 3.

4.1.2. Participants. We decided to use expert programmers as subjects in this study
because (1) if experienced programmers cannot make use of Pipes Plumber, then we
expect it will be difficult for end users to make use of it; (2) these users are easily
accessible; and (3) Yahoo! Pipes is popular with both professionals and end-user pro-
grammers. To recruit such participants, we sent an email to a departmental mailing
list. As an incentive, participants were included in a raffle for a $25 prize. Nine students
responded to our advertisement. All students were male, with seven from computer
science or computer engineering and two from other departments. Four of the students
were undergraduates and five were graduates. None had prior experience with Yahoo!
Pipes, but all had some programming knowledge (78% knew multiple programming
languages).

4.1.3. Independent and Dependent Variables. The independent variable in this study in-
volved the presence (Figure 3) or absence (Figure 1) of versioning information. Partic-
ipants interacting with our enhanced Yahoo! Pipes environment had access to the ver-
sioning help provided by that environment.12 Participants interacting with the original
Yahoo! Pipes environment did not have access to such versioning help because Yahoo!
Pipes does not provide such support.

Dependent variables measured in this study were (1) the correctness of tasks and
(2) the time required to create pipes. These variables allow us to measure the effective-
ness and efficiency of the participants at performing their tasks.

4.1.4. Study Setup and Design. The study used a single factor, within-subjects design
(a design in which the independent variable is tested with each participant [Wohlin
et al. 2000]). We opted for a within-subjects design for three reasons. First, we wished
to minimize the effects of individual differences among participants. Second, a within-
subjects design allows us to gather more data using a smaller sample size. Finally, since
each participant in our within-subjects study gained experience performing tasks using
the environment with and without our versioning support, they were better positioned
to provide feedback about the usefulness and usability of our versioning support than
participants in a between-subjects study would be.

12In this initial study, “Tested” widgets and tags related to “ERROR” and “Tested” had not yet been added
to the interface.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:10 S. K. Kuttal et al.

In this study, all participants attempted two pairs of two types of tasks, where the
first task in each pair was attempted using the standard Pipes environment and the
second was attempted using Pipes Plumber.

We used think-aloud protocol in our study, asking participants to vocalize their
thought processes and feelings as they performed their tasks [Lewis 1982]. We
used this protocol because a primary objective of the study was to explore partici-
pants’ thought processes when using Yahoo! Pipes and our extension and gain insights
into the barriers and problems that they faced. This protocol required us to administer
the study to participants on an individual basis with an observer; in this case, the first
author. The observer provided no input about the tasks to the participants.

We performed the study in the Usability Lab of the Computer Science and Engineer-
ing Department at the University of Nebraska-Lincoln. At the beginning of the study,
participants were asked to complete a brief background questionnaire, which was fol-
lowed by a tutorial of approximately 10 minutes on Yahoo! Pipes and versioning in
general. The tutorial also included a short video of a sample think-aloud study so that
participants could understand the process. After participants completed the tutorial,
we asked them to create a small sample pipe to give them hands-on training. We also
provided them with a list of documentation links that were within the Yahoo! Pipes
web site.

Following these preliminaries, we asked participants to complete tasks for the study.
Each participant completed a pair of tasks for RQ1 (mashup creation) followed by a
pair of tasks for RQ2 (mashup understanding). The first of each pair of tasks was a task
without versioning support (control tasks), and the second was a task with versioning
support (experimental tasks). We also provided documentation on the versioning tool
and requirements for the tasks to the participants; they were allowed to refer to these
documents at any time while performing their tasks. We audio recorded each session
and logged the users’ on-screen interactions using a screen capture system (Morae13).
The total time required for completion of the study per participant was approximately
1.5 hours, which included an average of 60 minutes for task completion.

After participants completed all tasks, we administered an exit survey. The survey
consisted of both closed and open-ended questions about the tasks, the interface of our
versioning extension, and the experiment process.

4.1.5. Tasks. We designed two tasks to address our research questions: Task 1 and
Task 2. Task 1 was designed to allow us to observe reuse behavior and hence addressed
RQ1, whereas Task 2 was designed to allow us to observe how participants compre-
hended a given pipe and was related to RQ2. Because the study was within-subjects,
we further subdivided each task into two categories: Control (C) and Experimental (E)
tasks. Therefore, in total we defined four tasks, with Task1.C and Task1.E address-
ing RQ1, and Task2.C and Task2.E addressing RQ2, respectively. We also provided
participants with the instruction handout for Pipes Plumber.

Task 1 required a participant to create a pipe for a given set of requirements. Partic-
ipants were first given a similar existing pipe (of 10 modules) as a template that they
needed to understand. Then they were asked to create a pipe reusing some parts of
the first pipe and adding some functionality. The existing pipe for Task1.C allowed a
Spanish-speaking person to search for reviews of any business within a geographical
location and within a certain distance, such that all results returned contained the
search term in the title and were sorted in alphabetical order. Once a participant un-
derstood the pipe, they were asked to create a pipe that allowed a search for a review of
any item around any area within a certain specified distance, but with the addition of

13Morae: http://www.techsmith.com/morae.asp.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

http://www.techsmith.com/morae.asp

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:11

new functionality; namely, the ability to change the original title of the search results
to a title of their choice.

Task1.E involved a different pipe of complexity similar to the one used in Task1.C.
This pipe was designed for a news enthusiast who wanted to search Yahoo! News for
a topic filtered to display only those news items with some specified keyword in the
title. The results of the query were to be unique and contain at least two items in
reverse order based on the date of publication. As in Task1.C, participants were asked
to understand the given pipe and then move on to the next step. In the second part of
Task1.E, participants were asked to create a pipe that allowed a French-speaking user
to search Yahoo! News for a search term while ensuring that search result titles were
unique and translated into French.

Task 2 required participants to view a given pipe and answer a set of multiple-choice
questions about the pipe and its functionality. The pipes used in Task 2 (Task2.C,
Task2.E) were larger and more complex than those used in Task 1. Task2.C involved
a pipe of 47 modules that displayed a list of unique, “mashed up” contents from five
different sites specified by its user. A user could also limit the number of results that
were displayed and sort results in descending order of date. Task2.E involved a pipe
of 50 modules and was a generic filter used to merge feeds from different sources, and
remove duplicate items received from those feeds. Further, a user could specify four
different feeds, truncate or limit the maximum number of resulting items per feed, and
select a maximum number of items that could be displayed.

For each of the foregoing tasks, participants in the Experimental group were provided
with sample pipes that had versioning histories already associated with them. This
was needed so that participants could investigate how each pipe was built from the
ground up, and in this way, better understand the different functionalities provided
by the modules in the pipe. To provide realistic versioning histories, the first author,
given the intended specification for the pipes, created those pipes by following what, in
their experience, represented reasonable appropriate programming increments, adding
modules and employing tags that seemed appropriate for those versions. It is these
versions that were initially available to participants in the History of Pipe information
provided by Pipes Plumber. The versions for both tasks were designed to incrementally
illustrate each feature or module working correctly, but in practice this situation may
not hold; rather, a beginner may begin with no such information, working with a blank
History of Pipe list.

The Control group received the same sample pipes as the Experimental groups, but
without versioning information.

Measures
To evaluate whether versioning helped pipe programmers in their tasks, we mea-

sured the time it took participants to complete each task and the quality of the resulting
pipes. We measured the duration of the time needed by participants to finish a task
in minutes. We measured the quality of pipes by grading the pipes created by each
participant to create a correctness score ranging from 0 to 100, where high scores
indicate better performance. To reduce possible bias in the grading scheme, the first
author and a graduate student not involved in the research worked together to create
a grading scheme. They used this to grade pipes individually, and then they conferred
and came to consensus on the grading results. The following paragraphs outline the
grading scheme used.

On Task 1, participants could either reuse the modules from the pipe provided in
the preliminary step or create the pipe by reimplementing the modules. In either case,
they were already aware of the functionality provided in the given modules. We thus
assigned 40 points to the correct use of the modules or the correctness of the function-
ality they provided. The remaining 60 points were awarded if the participant could

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:12 S. K. Kuttal et al.

Table II. Mean (Median) Correctness Scores and Time-to-Completion

Creation Understanding
Ctrl Exp Ctrl Exp

Correctness 94.2% (95.0%) 98.1% (100.0%) 65.0% (60.0%) 65.0% (60.0%)
Time (mins) 17.2 (14.3) 7.2 (6.7) - -

correctly create the additional modules needed to complete the task. Participants were
penalized 10 points if they used incorrect logic (i.e., incorrect wiring between modules)
or incorrect URLs. Participants were also penalized 5 points for each erroneous mod-
ule added. Finally, for each module that remained in the pipe that had no meaningful
impact on the output, two points were deducted. These penalties would have resulted
in negative scores; to avoid this we set 40 points as the lower limit.

On Task 2, we measured only correctness. The task consisted of five quiz questions.
Each question was worth 20 points; hence, a correct answer resulted in the assignment
of 20 points and an incorrect answer resulted in the assignment of zero points.

4.1.6. Analysis Methodology. In this study, we asked our participants to perform exper-
imental tasks after performing control tasks. A consequence of this choice is that in
moving from the control task to the experimental task, participants might benefit from
the former experience in a manner that might influence their results on the latter
(learning effects). Furthermore, given that the study was conducted following think-
aloud protocol, results involving time measures can be affected. Because of these design
limitations, we rely primarily on our observations of how participants performed their
tasks while using, or not using, versioning support. In our analysis, we refer to the
participants individually as P[i] (1 < i < 9).

4.1.7. Results. Table II summarizes the overall results of our study. We next address
our research questions in turn; we then discuss implications of the results.

RQ1: Versioning and Mashup Creation
To address our first research question we considered the correctness of pipes and the

time required to create pipes with and without versioning support.
As our participants attempted Task1.C and Task1.E, we allowed them to proceed

to the next task when they believed that they had finished creating pipes as per the
given requirements. Because there was no acceptance test, some of the resulting pipes
were partially incorrect. Participants were largely successful in creating correct pipes
in both the control and experimental tasks, with mean correctness for the control (Ctrl)
task being 94.2% (median 95%) and mean correctness for the experimental (Exp) task
being 98.1% (median 100%). Participants exhibited a higher measure for correctness of
pipes when engaged in the experimental task than when engaged in the control task.

As participants performed tasks relevant to RQ1 (Task1.C and Task1.E), we exam-
ined the total time required for them to complete their tasks, which included both
the time required to understand and comprehend the given sample pipe and the time
required to implement the required pipe. The mean time spent by all participants
in Task1.C was 17.2 minutes (median 14.3 minutes), while the mean time spent for
Task1.E was 7.2 minutes (median 6.7 minutes).

RQ2: Versioning and Mashup Understanding
Task 2 was designed to help us address our second research question regarding the

benefits of versioning in enabling the understanding of complex, third-party mashups.
In addition to observing participants’ behavior in Task 2, we administered a multiple-
choice quiz in which participants were asked to answer questions to help us assess the
degree to which they understood the pipes. The mean correctness for the control (Ctrl)

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:13

task was 65% (median 60%), and the mean correctness for the experimental (Exp) task
was also 65% (median 60%).

A post-hoc analysis of our participants’ behavior showed that they often (in five cases
out of nine) did not use the versioning features while engaged in the understanding
task even when these features were available, so it is difficult to ascribe the lack of
differences in understanding across tasks to the presence or absence of versioning.

4.1.8. Discussion and Implications. To obtain additional insights into the behavior that
our study participants engaged in while performing their tasks, we analyzed the study
data qualitatively.

Success in Reuse. One of our initial conjectures about the potential usefulness
of versioning for mashups was that making earlier versions available would enable
mashup programmers to better reuse mashups. Since reuse is one of the primary
mechanisms by which end-user programmers construct new programs [Cypher et al.
2010], data on this premise might further inform the mechanisms by which we provide
versioning. Our exploratory study indicates that versioning can facilitate the reuse of
pipes and modules.

The reuse task can be further divided into two subparts: (1) understanding the
functionality of the given pipe and (2) reusing parts of that pipe to create a pipe with the
required functionality. We studied data relevant to each of these subparts to investigate
whether the presence of versioning had an effect. We discuss the understanding subpart
later in this section (along with discussion of Task 2).

We found that a key reason for the success of the Experimental group (Table II)
was the availability of the evolution history of the pipe through the History of Pipe
list. This list provided a step-by-step guide about which modules were added to the
pipe and the resulting output, which in turn helped Experimental group participants
select the parts of the pipe that they needed to reuse. For example, while performing
Task1.E, participant P7 commented, “[Looking at History of Pipe] version 2 seems to be
the one needed [pauses while still looking at History of Pipe] version 3 has the filtering
which is not needed . . . so . . . I will take version 2 and add to it. . . .” Participant P7
commented: “what versions are there . . . [looking at History of Pipe] . . . we need the
textinput, output, yahoo search and . . . looks like we don’t need sort and hence we
need the version 2.”

This benefit of versioning was suggested in the participants’ feedback in our exit
surveys. Eight of nine participants mentioned that they thought versioning improved
the reusability of pipes and all eight had used versioning in their experimental tasks.

Success in reuse also translated into efficiency gains. In the experimental task,
because participants were able to identify the most appropriate version upon which
new functionality was to be added, they saved time that would otherwise have been
spent examining and removing extra modules. For example, participant P7 spent
4.41 minutes performing the reuse task in the presence of versioning, compared to
31.17 minutes without versioning.

Identifying and Locating Pipes. Currently, there are no mechanisms for identi-
fying the ancestor of a pipe (the initial pipe from which a subsequent pipe is derived)
in the Yahoo! Pipes environment. Moreover, one can recognize that a given pipe has
been cloned, but there is no way of identifying which modules belonged to the original
(parent) pipe from which the cloned pipe was obtained, and which modules are new.
Because of these constraints, many participants in the Control group faced problems.
We found that participants had trouble locating initial or parent pipes for reference
during tasks and identifying the modules that they had added versus those that were
from the parent pipe. For example, participant P6 in Task1.C cloned the given pipe
and started editing, but when he became stuck and wanted to restart his work, he was

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:14 S. K. Kuttal et al.

unable to locate the original pipe from the list of pipes that Yahoo! provides. Similarly,
participants who cloned a pipe often removed too many modules from it or did not re-
member how the modules that they had removed functioned in the parent pipe. As an
example, participant P7 was unsure about how to replace all of the item titles in a pipe
(Task1.C). He was unsure about whether to use and how to use the loop module and
experimented with the module by adding and deleting it multiple times. To help with
such problems, some participants (P1, P4, and P7) viewed the initial pipe by opening
it in a separate window. In all cases, however, if participants had versioning available,
the original (and subsequent work-in-progress) pipes would have been saved and been
readily available—a fact that all participants noted in the exit survey.

Backtracking to Prior Versions. We found that during their programming tasks,
in addition to seeking information on initial or parent pipes, participants often desired
to return to earlier “intermediate” versions of pipes. In other cases, participants deleted
more modules than required and wished to bring those deleted modules back. In both
situations a versioning tool could have been helpful. For example, while performing
Task1.C, participant P8 deleted most of the modules and then wished to return to an
earlier version, commenting: “I’m just trying to get back [to an earlier version] so I can
see how this pipe works.”

While providing access to prior versions appears to be important, the manner in
which the access is provided also matters. We observed that most participants started
editing the given pipe from the second version (V2). However, the next version saved by
the participants was version seven (V7), as our system generates and presents versions
in a linear order, and the pipe provided to participants already had six (prior) versions.
This caused the parentage information on the newly cloned pipes to be hidden, causing
some confusion for participants; a factor that led us to add tool tips with parentage
information in subsequent enhancements to the interface.

Debugging: We observed that the messages generated by Yahoo! Pipes as partici-
pants debugged and tested their changes were difficult for them to comprehend. As a
result, they were often forced to revisit their earlier versions to find errors. For exam-
ple, participants often made mistakes while performing the task that required them to
add two additional modules to a pipe. Participant P8 was not happy with the results of
his actions and removed the loop and string replace modules, replacing them with
the rename module. He made a couple more changes and checked the debugger output
to observe the runtime behavior of the resulting pipe. After a few minutes, he real-
ized that his modifications were not correct and commented, “Umm, actually it was
working with the string replace, tyring to figure out how to get that to work.” Later he
commented, “So, I think I broke something actually. I gotta figure out what.” Providing
mechanisms by which users can tag specific versions, to facilitate later return to them,
could help with such problems.

Pipe Understanding. In Task 1, versioning helped participants understand the
structure and rationale underlying the third-party pipes and their evolution. The His-
tory of Pipe list provided a structured mechanism that allowed participants to un-
derstand the pipe functionality incrementally. This was evident when participant P4
commented, “You can see how each pipe was developed along the way to final product.”
Another participant, P5, stated in the exit survey that versioning was helpful when
trying to learn about the functionality of a pipe: “When looking at the overall finished
pipe it was quite intimidating. Using the versioning tool, it was much easier to follow
along the order of the finished pipe to gain a better understanding.”

In Task 2, in contrast, we found that the impact of versioning on pipe understanding
was somewhat limited (Table II). This might be due to the following reasons. First,
this task contained 45 modules and had a long history of evolution. A prior study has
shown that typical pipes in the repository have sizes ranging between 6 and 8 modules

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:15

[Stolee et al. 2011]. Therefore, it is possible that participants might have been over-
whelmed with the amount of complexity in this task. Second, it may be possible that
our Task 2 quiz results are more reflective of the difficulty in measuring the partici-
pants’ ability to understand a particular pipe than of their use of versioning. Finally,
unfamiliarity of the participants with the functionalities of our interface might have
also slowed them down.

4.1.9. Enhancements to Tool and Study Design. The results of our exploratory study
prompted us to investigate several enhancements to our versioning support, and to
design a more controlled experiment to study this support.

Tool Design. We found that debugging is difficult and was a key issue in our first
study; we therefore wished to investigate whether our versioning support can help
users perform debugging tasks. While conducting Study I (Task 1), we observed that
participants often used the History of Pipe widget, and that they often wished to
refer back to specific prior (working) versions. This motivated us to provide markers
to distinguish erroneous versions from tested versions of pipes, and to indicate when
users believe that pipes have been adequately “Tested”—as discussed in Section 3.
We also wished to assist users in finding prior versions in cases where parentage was
masked; this led us to add parentage information through tool tips.

Study Design. There were three primary changes we wished to make to our study
design. First, we wished to investigate a more diverse population of users, including
both Computer Science Experts (CSEs) and End Users (EUs). End users are different
from computer science programmers because they program for personal use rather
than public use [Ko et al. 2011]. Examples of end users are wide ranging; they include
scientists, engineers, interaction designers, web masters, actuaries, and so forth. End
users also differ from professional developers in terms of the amount of experience
they have with software engineering concepts.14 Professional developers, in contrast,
are more concerned and hence pay more attention to quality issues of their software.

Second, we wished to investigate the use of versioning support in a manner that
lessens the limitations of our exploratory study with respect to possible learning effects,
and in a manner that enables more precise estimations of time by eliminating the
think-aloud process from the experiment and counterbalancing the tasks.

Third, because we discovered that participants found debugging difficult in Yahoo!
Pipes and we wanted to test our enhancement to the History of Pipe widget, we replaced
the “understanding” task with a “debugging” task. (Note that the reuse task already
included an “understanding” component.)

4.2. Study II (Controlled Experiment): Versioning for Creation and Debugging

Our exploratory study provided support for the claim that versioning can help mashup
programmers create mashups more efficiently and effectively. In our second study,
we wished to further investigate this claim with a more diverse population and in a
manner that enabled more precise estimations of time by eliminating the think-aloud
component. We also wished to investigate whether our versioning support can aid users
in performing debugging tasks. We thus framed the following research questions:

—RQ1: To what extent does versioning help mashup programmers reuse and debug
mashups effectively and efficiently?

—RQ2: To what extent does versioning render reusing and debugging tasks different
for mashup programmers in terms of effectiveness and efficiency?

14Software engineering is defined as “the application of systematic, disciplined, activities that address soft-
ware quality issues” [Ko et al. 2011].

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:16 S. K. Kuttal et al.

Table III. General Demographics

Distribution
Characteristics CSE EU

Gender Male 12 10
Female 0 2

Age 19–23 8 7
24–29 4 3
30–40 0 2

Education Undergrad 7 7
Grad 5 5

Number of 1–2 1 10
Known Languages 3–5 10 1

6–10 1 1
Programming None 0 2

Experience <1 year 3 5
2 years 1 2
3 years 3 2
4 years 1 1

>4 years 4 0
Yahoo! Pipes Familiarity 1 1

No Familiarity 11 11

—RQ3: To what extent and with what differences does versioning benefit computer
science participants and end users?

We conducted a pilot study of three participants from our lab to help us adjust the
experimental artifacts and processes, results of which are not discussed here.

4.2.1. Participants. We recruited 24 students from the University of Nebraska–Lincoln
by sending emails to student mailing lists across departments at the university. Par-
ticipants were selected from those responding to our email on a first-come, first-served
basis, and were paid $20 for their participation in the study. Table III summarizes
the general demographics of our participants. Twelve of the participants were from
the Computer Science and Engineering Department and had the formal training in
programming expected of students in such a program; we refer to these students as
“CSE participants.” The other 12 students were from other departments and had no for-
mal training (at least, not to the level of computer science students) in programming.
Several of these end users (“EU participants”), however, had programming training
appropriate to the more rudimentary requirements of their majors, such as in the
use of introductory Matlab, C, or C++ for non-CS majors. The distribution of the ma-
jors among the the latter students was Electrical Engineering (2), Mechanical Engi-
neering (1), Civil Engineering (4), Transport Engineering (1), Biological Systems (2),
Materials Science (1), and Actuarial Science (1). Participants’ ages ranged from 19 to
40 years. Of the participants, 22 were male and 2 were female; these were distributed
across the two treatment groups. Only two of the participants had prior experience
with the Yahoo! Pipes environment, and neither of them had created more than five
pipes.

4.2.2. Independent and Dependent Variables. Our independent variable involved the pres-
ence (Figure 3) or absence (Figure 1) of versioning information, with the former pro-
vided via Pipes Plumber. To measure effectiveness and efficiency, we used two depen-
dent variables tracking (1) the correctness of pipes following creation or debugging
activities, and (2) the time required to create or debug a pipe.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:17

4.2.3. Study Setup and Design. In most respects, our study setup and design followed
that used in Study I (the primary exception being counterbalancing of tasks, discussed
in the following text). We used a mixed-methods design, with task type (creation,
debugging) and environment (Pipes, Pipes Plumber) as within-subjects variables and
programming expertise (CSE, EU) as a between-subjects variable.

We conducted the study in the Usability Lab at the University of Nebraska–Lincoln,
where we could observe and record transcripts for each participant. We audio recorded
the sessions and logged the participants’ on-screen interactions using Morae. The study
protocol was administered to each participant individually, with the first author con-
ducting each session but providing no input to participants while they were engaged
in their tasks. The total time required for completion of the study was approximately
2 hours, which included about 60 minutes for task performance. After all tasks were
completed, we administered an exit survey to obtain further feedback.

4.2.4. Tasks. Study 2 included two types of tasks. Task 1 required participants to
create pipes, given pipes that they could choose to reuse portions of. Task 2 required
participants to debug pipes. To enable a within-subjects study we again created two
distinct subtasks for each type of task (reusability and debugging) so that we could
examine the participants’ experience with and without versioning for that type of task.

Task 1 was followed by Task 2 for all participants. We did not counterbalance Task 1
and Task 2 because Task 2 (debugging a faulty pipe) was a more complex task and we
believed that it was beneficial for participants to gain some expertise with the Yahoo!
Pipes environment to reduce understanding barrier effects (see Section 5), which would
enable participants to be more successful in Task 2 and avoid frustration. Note that
this learning process does not bias our results, because all participants had similar
experiences with and without versioning support in Task 1.

Subtasks within Task 1 and Task 2 were counterbalanced in the following manner:
Within each task, we performed two levels of counterbalancing. First, we counter-
balanced the order in which participants received the treatment; that is, half of the
participants performed the control task before the experimental task and the other
half performed the experimental task before the control task. Furthermore, to ensure
that there was no bias associated with a treatment, we counterbalanced the subtasks;
that is, half the time subtask “search” was associated with the control treatment and
subtask “blog” with the experimental treatment and the other times subtask “search”
was associated with the experimental treatment and subtask “blog” with the control
treatment. We performed similar counterbalancing for subtasks (“eBay” and “movie”)
for Task 2.

As in Study 1, each of the pipes provided to participants in the Experimental group
was provided with versioning histories. Again, the first author created the versions for
these pipes based on what, in her experience, represented appropriate programming
increments, employing tags that also seemed appropriate for those versions. (Note that
in practice, a beginner creating a pipe from scratch would begin with a blank History
of Pipe list, and have no such information.)

During the study, we provided the participants with various documents. These in-
cluded specifications and requirement documents for each subtask, and the output
of the correct pipe to act as an oracle. Participants were also given an instructional
handout for Pipes Plumber.

Next, we describe each subtask in detail.
Task 1
Task 1 involved two steps. The first step required a participant to understand the

functionality of a given pipe. The second step required them to create a pipe that had
some functionality in common with the given pipe. They could complete this task either

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:18 S. K. Kuttal et al.

by creating the new pipe from scratch or by reusing some of the modules in the given
pipe. The two given pipes were of similar complexity and involved similar numbers of
modules (13–14 each). The two subtasks were as follows.

In Task1.search, participants were given a pipe that lets users search for a review of
any item within a given distance of a given location (e.g., reviews of museums within
10 miles of Lincoln, Nebraska). The distance from the location is at the discretion
of the user and hard-coded in the pipe. The user can choose the number of reviews
to be displayed. The results of the search are translated into Korean. The titles of
the reviews are unique (i.e., duplicates are filtered out) and they are presented in
alphabetical order.

The next step required participants to create a pipe similar to the one used in the
first step. The difference was that this step required participants to implement extra
functionality; namely, to rename all of the titles in the search result with a title of their
choice (e.g., if a participant specifies the title to be “museums” then he or she will see all
titles replaced by “museums”). Further, other actions such as sorting results, filtering
out duplicates, and translating into Korean were not required of this pipe.

In Task1.blog, participants were given a pipe that allows a user to search for any
topic in a set of blogs hosted on websites such as Blogpulse and Technorati. The pipe
then merges the results into a single feed, displaying only unique results and sorting
them in ascending order. It also allows the user to truncate the number of results
based on user input at runtime and allows users to filter out items in which they are
not interested (e.g., filter out crime items from the search results). Finally, the pipe
provides a status display regarding the total number of results generated by the query
and the truncated results.

In the next step, participants were asked to create a pipe similar to the one used
in the first step, but with the additional requirement that the results be translated
into Spanish. As in the previous task, the results of this pipe were not required to be
unique, sorted, or filtered on a given keyword. The display status from the previous
step also was not required and was considered extraneous.

Task 2
In Task 2, participants were given pipes into which we had seeded two faults. These

faults were related to missing module, missing parameter value and incorrect module
problems in the pipe. Each pipe included 15–16 modules. Participants were given
detailed requirements about the functionality of the correct pipe along with an example
of the output of the correct pipe. Participants were required to correct the seeded faults
and ensure that the pipe was working as stated in the requirements by matching their
results with the sample output. The two subtasks were as follows.

Task2.movie involved a pipe that allows a user to generate a list of local theaters
by inputting their zip code. The pipe then collects a list of movies and displays them,
together with show times and geolocations, on Yahoo! Maps. The user could also ob-
tain a poster and reviews of a movie. This pipe included missing module and missing
parameter value faults.

Task2.eBay involved a pipe that allows a user to search for an item on an auction site
such as eBay, or in a list of classified ads on Craigslist (e.g., San Francisco Craigslist).
The pipe allows the user to set a price range by inputting minimum and maximum
amounts. Search results include the name of the site from which the item was retrieved.
The user has the option to limit (truncate) the number of results displayed. This pipe
included missing module and incorrect module faults.

Measures
To evaluate whether versioning helped pipe programmers in their tasks, we mea-

sured the time participants spent performing tasks and the correctness of the resulting
pipes. We measured time in minutes and measured correctness using scores ranging

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:19

from 0 to 100. On Task 1, we used the same measures used to judge the correctness
of pipes in Task 1 in Study I. On Task 2, 80 points were given if participants success-
fully identified and corrected the seeded errors in the given pipe. There was no partial
credit for just identifying the error. The remaining 20 points were allocated to other
errors; specifically, if participants added new errors when implementing a pipe, they
were penalized 10 points, and if they added unrelated modules, they were penalized
five points apiece (up to a maximum of 10 points). This penalty could have resulted in
negative scores; to avoid this, we set 20 points as a lower limit. If participants created
correct pipes, they were given 100 points.

4.2.5. Threats to Validity. Where external validity is concerned, our participants were
all university students, and the 12 who constituted our “end-user” population were
primarily engineering students. Further, almost all participants were male. A second
threat to external validity is that our study considered only two tasks that built on
only two types of pipes. Additional studies of different populations, tasks, and pipes
are needed. A third threat arises from the fact that the participants were asked to
use pipes that were provided, rather than pipes which they had created for them-
selves. While the reuse context is common and important, prior familiarity with pipes
and histories could lead to different results. A fourth threat arises from the fact that
the histories provided with the pipes given to Experimental groups, and the bugs
placed in pipes, represent only a small sample of the possible histories and bugs that
could be associated with pipes. These threats can be addressed only through further
studies.

The primary threat to internal validity for this study relates to our choice of a
within-subjects design. This study design helped minimize effects related to individual
differences and the use of a small pool of participants, but it might have led to learning
effects as participants moved from initial to later tasks. In this study, however, unlike
the first, we counterbalanced the order in which participants were assigned to the
Control and Experimental groups, by randomly selecting participants to either perform
the experimental task and then the control task or vice versa.

A second internal validity threat can arise if our pairs of subtasks (two per task
type) are not of equal complexity, in which case results might be dependent on subtask.
To limit this threat, we interchanged the subtasks that were given to the Control
and Experimental groups (i.e., Task1.search was used as a control task on half of
the runs and as a treatment task on the other half). To assess whether any problems
related to this threat had occurred, we performed paired t-tests for Task1.search versus
Task1.blog and Task2.movie versus Task2.eBay, ignoring order and tool type, and found
no significant differences. A third validity threat can arise from learning effects that
occur between participants’ performances of Task 1 and Task 2; however, we believed
that the debugging task needed to be performed second in all cases as debugging is
more difficult and participants would benefit from learning about the environment
during Task 1.

Construct validity threats include the possibility that the complexity of our pipes was
not high enough to allow measurements of effects and that the pipes used for control
and experiment tasks were not comparable in complexity. We controlled for this by
performing a pilot study of three end users and using their feedback to adjust the pipes
and the tasks. Further, as already reported, we found no significant differences when
we compared performance across subtasks.

Where conclusion validity is concerned, correctness of pipes was measured manually
and this could be a source of bias; however, as noted, we took steps to limit the likelihood
of such problems by employing a graduate student outside the research group.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:20 S. K. Kuttal et al.

Table IV. Correctness Results

Effects DF F value p-value

Tool type 44 24.04 <0.0001
Task type 22 5.35 0.0304
Expertise 22 2.19 0.1530
Expertise by Tool type 44 1.06 0.3094
Expertise by Task type 22 0.12 0.7326
Tool type by Task type 44 0.07 0.7937
Expertise by Task type by Tool type 44 3.75 0.5920

Table V. Time Results

Effects DF F value p-value

Tool type 42 6.50 0.0145
Task type 20 1.66 0.2120
Expertise 20 0.61 0.4453
Expertise by Tool type 42 1.52 0.2241
Expertise by Task type 20 3.72 0.0681
Tool type by Task type 42 0.10 0.7592
Expertise by Task type by Tool type 42 0.03 0.8607

4.2.6. Analysis Methodology. Because our data depended on three main factors (Exper-
tise, Tool type, and Task type), we conducted a three-way analysis of variance on our
data, treating one factor as between subjects (Expertise) and two factors as within sub-
jects (Tool and Task). Therefore, our analysis had three main effects (Expertise, Tool
type, and Task type) and four interaction terms (Expertise by Tool type; Expertise by
Task type; Tool type by Task type; and Expertise by Tool type by Task type). We used
split-split plot ANOVAs [Dowdy et al. 2004] in order to consider all the error terms
in the statistics. We performed these ANOVAs using the SAS programming language
[Cody 1988].

We analyzed our data for correctness and time separately.15 We also qualitatively
analyzed the participants’ transcripts to gain additional insights into their behavior.
In our discussions, we refer to end user participants as EU[i] and computer science
participants as CSE[i] (1 < i < 12), respectively.

4.2.7. Results. We found that the three-way and two-way interaction effects for correct-
ness as well as time were not significant at α = 0.05 (see Tables IV and V). Therefore, we
investigate only the effects of the main factors when answering the research questions.

RQ1: Effects of Versioning
To address our first research question we considered the correctness of the results

when participants performed reuse and debugging tasks with and without versioning
support, and the time taken to complete the tasks in those contexts.

As in Study I, we allowed our participants to proceed to the next task whenever they
wished to. There was no acceptance test or time limit attached to the performance of any
of the tasks. The results of our analysis (at α = 0.05) show that the main effects of the
tool for the correctness (p < 0.0001) and time (p = 0.0145) measures were statistically
significant. This suggests that the availability of our versioning support helped our

15During the experiment, two EU participants in the Experimental group could not find the pipe on which
they were working in the list of pipes (provided by Yahoo!); because of this, they lost their changes and needed
to redo their tasks from scratch. Because we create versions only when users save their pipes, versioning
did not help these participants recover their lost code; hence, we exclude them from our sample where time
costs are concerned.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:21

Table VI. Participants (Experimental Group) Who
Checked Versions during Task Completion

Instances of versions checked
Activities Task 1 Task 2

undo 4 5
redo 1 3
inspect list view 61 145

Table VII. Mean (Median) Correctness and Time Scores with and without Versioning

Reuse Debug
Ctrl Exp Ctrl Exp

Correctness 65.42% (70%) 87.92% (90%) 53.33% (60%) 73.54% (85%)
Time (mins) 18.14 (13.58) 14.30 (11.14) 20.53 (18.18) 15.73 (12.02)

participants reuse and debug pipes. The Experimental group was significantly better
in providing more correct results and took less time than when participants did not
have access to that support.

All participants in the Experimental group used versioning support. In fact, in cases
in which participants had versioning support as the first treatment, they requested
that support when they were required to work without it (when working in the Control
group). Further analysis of participants’ versioning use (see Table VI) shows that few of
them used the undo/redo functionality; instead, they predominantly used the History
of Pipe list. This list allowed them to view the provenance of their pipes along with
their “testedness.”

Versioning and Mashup Reuse
The mean correctness scores for the mashup reuse task were 65.42% (median 70%)

without using versioning and 87.92% (median 90%) when using versioning. The mean
time costs for the mashup reuse task were 18.14 minutes (median 13.58 minutes)
without using versioning and 14.30 minutes (median 11.14 minutes) when using
versioning (see Table VII). Our results show that versioning helped participants reuse
parts of pipes.

Participants in both treatment groups began their tasks by first studying the specifi-
cations (written descriptions provided to them) of pipe behavior. Then, they attempted
to comprehend the pipe code by inspecting modules. To obtain a sufficient understand-
ing of their pipes, participants also needed to understand the text or source contents
of the websites that were used as data sources in the pipes. Such understanding would
have helped them comprehend the structure as well as contents of the websites, and
helped them determine which components of those sites are used as parameters in pipe
modules. However, while attempting to comprehend pipes, only one participant (EU12)
examined relevant websites. Other participants investigated the given pipe by focusing
only on the modules and their functionality. Once participants believed that they had
sufficient understanding of pipe functionality, they moved on to their assigned task of
reusing a pipe.

After studying the requirements of the tasks, participants decided either to work
on the same pipe, create a new pipe or “clone and own” (copy) a pipe. In the Control
group, most (10 of 12) participants cloned pipes while a few (2 of 12) created pipes
from scratch. From our observations, it appears that these two participants wanted
a “fresh start.” They opened a new browser window and began working on their new
pipe, while keeping the given pipe open in another browser instance. In contrast, in the
Experimental group, some (25%) participants cloned pipes while most (75%) preferred

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:22 S. K. Kuttal et al.

to work on the original pipes. We believe that a majority of participants started editing
the given pipe because they knew that they could revert back to it at any time.

We attribute the success of the Experimental group to the fact that most of the par-
ticipants (21 of 24) were able to use the History of Pipe list to select prior versions
that contained the required functionalities. For example, while working in the Exper-
imental group, EU3 required just 10 minutes to create his pipe correctly, but while
working in the Control group, he spent 22.5 minutes without success. This difference
occurred because the selected version acted as a template, allowing him to make just
minor changes to make the new pipe work.

We also noted that participants “debugged their pipes into existence” [Rosson and
Carroll 1993]; that is, their designing was interlaced with coding, testing, and correction
activities. Typically, participants created their pipes by bringing in modules and seeing
whether the pipe behaved as desired; if not, they then removed certain components.
Another behavior we observed was opportunistic programming [Brandt et al. 2009];
behavior that could help users explore different ideas quickly. Participants formed var-
ious and different ideas about how to implement solutions—ideas that had different
strengths and weaknesses. Participants implemented solutions for those ideas, back-
tracked through their prior changes, and implemented alternative solutions.

In summary, participants in the Experimental group benefited from versioning when
performing opportunistic programming or debugging programs into existence because
they could revert back to prior successful or unsuccessful versions and attempt to
pursue different strategies. In the exit survey, participant EU6 commented: “Nice to be
able to go back to the old files easily.” Participants in the Experimental group were also
more adventurous and explored more ideas than participants in the Control group, and
we attribute this to the fact that they knew that they could return to prior versions.
Participant EU8 confidently tried four different ideas, noting that he was aware that
versioning would allow him to return to prior versions. In the control task (which
occurred after his experimental task), he asked the observer for versioning support,
inquiring: “Where is the version history?”

As noted in reference to Study I, some of the participants also referred to prior
versions as examples and used them to understand the usage of components or con-
nections. For example, while performing Task 1, participant CSE1 wished to use the
string builder module, so he studied prior versions to see how to use the module and
then was able to use it correctly. The History of Pipe list allowed participants to identify
the (pipe) version in which the module was used. The list also helped participants in
the Experimental group understand the process by which pipes were created. In the
exit survey, participant EU3 commented that with this list, it was “easier to see the
process and flow of development.”

Versioning and Mashup Debugging
The mean correctness scores for the mashup debugging task were 53.33% (me-

dian 60%) without using versioning and 73.54% (median 85%) when using version-
ing. The mean time costs for the mashup debugging task were 20.53 minutes (median
18.18 minutes) without using versioning and 15.73 minutes (median 12.02 minutes)
when using versioning. Details are provided in Table VII.

In the Control group, participants executed their pipes and tested them for errors. As
in Task 1, in Task 2, they also first attempted to understand the requirements for the
pipe. In Task 2, however, the act of understanding the pipe overlapped with the activity
of locating bugs. Since existing mashup environments allow only runtime observations
[Grammel and Storey 2008], as participants explored the modules in the pipe, they also
looked for errors by checking the debugger window for error messages. This strategy,
however, required substantial time. For example, CSE6 inspected each module of his
pipe and spent 40.13 minutes debugging the pipe without success.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:23

Table VIII. Mean (Median) Correctness and Time Scores
for Reuse and Debugging Tasks

Reuse Debug

Correctness 76.67% (79.00%) 63.44% (60%)
Time (mins) 16.73 (13.26) 18.06 (16.30)

In the Experimental group, the History of Pipe list facilitated bug localization. The
tags for each run in the list indicate whether a specific version was untested, successful
or unsuccessful, and allowed participants to judge the “testedness” of versions. This
helped them narrow down their evaluation space. For example, in the Experimental
group, participant CSE6 needed only 9.13 minutes to correctly debug the pipe. He
looked at the version that was tested (V5) and those that were marked as erroneous
(V6 and V7). By observing these, he was able to locate the two faulty modules in the pipe.

After participants located modules containing errors, they proceeded further, at-
tempting to fix those errors. In the Experimental group, although participants were
able to locate bugs from the History of Pipe list, they spent substantial time searching
for fixes for those bugs. Most of the participants struggled to correct pipes. Note that
no points were given if a fault was correctly located but not fixed. While fixing bugs,
eight participants looked at documentation for example pipes, or versions (in the case
of experimental tasks), containing similar modules to attempt to understand the usage
of the pipes. Two participants searched (on Internet) the error messages or names of
modules in an attempt to understand problems further.

As in Task 1, all participants pursued various ideas involving the use of different
modules and parameters to attempt to correct errors. In the Experimental group, ver-
sion management support allowed participants to try different ideas more effectively,
as they were able to return to older (successful or unsuccessful) versions. For example,
in the Experimental group, participant EU1 located an error in the Fetch data mod-
ule and attempted to fix it using various alternative modules (Fetch auto discovery
and Fetch feed). He also pursued different ideas, that is, bringing two Fetch feed
modules in and connecting them with the pipe. In the exit survey, participant CSE1
commented on the helpfulness of this, saying: ‘Developers can always go back to the
previous version to fix a bug.”

RQ2: Effects of Task Types
To address our second research question, we considered the time required to perform

tasks of reusing and debugging pipes, and the correctness of the results.
The results of our analysis (at α = 0.05) show that the main effects of tool for

correctness measures were statistically significant (p = 0.0304), while the main effects
for time measures were not significant (p = 0.2120). Hence, the correctness results
achieved in reuse and debugging tasks differed significantly, with participants faring
better in reuse tasks than debugging tasks, even though the times spent by participants
in those tasks did not differ significantly.

The mean correctness score achieved in the mashup reuse task was 76.67% (me-
dian 79.00%) and the mean correctness score achieved in the debugging task was
63.44% (median 60%). The mean time cost for the mashup reuse task was 16.73 min-
utes (median 13.26 minutes) and for the debugging task was 18.06 minutes (median
16.30 minutes). Details are given in Table VIII.

The foregoing results might be seen as unsurprising, given that computer science
as well as end-user programmers reuse their own or other’s code quite often [Cypher
et al. 2010]. In contrast, debugging is known to be difficult for professionals [Rosson
and Carroll 1996] as well as end users [Cao et al. 2010b]. In our exit survey, partic-
ipant CSE1 commented that “it’s hard to debug,” and similar views were echoed by
participant EU12: “Last two tasks (debugging) were harder.”

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:24 S. K. Kuttal et al.

Table IX. Mean (Median) Correctness and Time Taken Scores for Reuse Task

Correctness Time (mins)
Ctrl Exp Ctrl Exp

CSE 78.3% (78.0%) 87.9% (87.5%) 20.2 (12.8) 13.0 (11.1)
EU 52.5% (67.5%) 87.9% (93.0%) 16.1 (15.5) 11.4 (12.9)

We found that the debugging support provided by Yahoo! Pipes-observation of run-
time behavior-was inadequate in helping participants debug correctly. For example,
despite the fact that in the Experimental group participants had a smaller evaluation
space (since participants were aware of the versions that were working correctly) they
struggled to correctly fix bugs. While versioning support helped participants focus their
debugging efforts and led to quicker fault localization, this step alone was not enough
since the main challenge was in fixing the errors.

To fix bugs, participants had to investigate three possibilities: (1) whether the correct
information source was being used, (2) whether the correct module was used, and
(3) whether the module used was the appropriate one for the information source used.
For example, the module Fetch Feed is used to display web content and requires the
use of RSS feeds, whereas the module Fetch Data performs a similar step but requires
XML content. One of the seeded faults involved the incorrect use of a module, that
is, a Fetch Data module was used to read RSS feeds. The correct solution required
the use of a Fetch Feed module. Identifying this mismatch and then finding the right
information source for the module proved to be extremely challenging to participants.

We posit that participants found it difficult fix errors for several reasons. First, the
error messages generated by Yahoo! Pipes were often difficult to interpret because
they involved technical jargon (see Section 5.1). Second, the available help was often
inadequate in pointing to the correct information source and the required format.
Finally, the fact that mashup environments rely on external data sources and provide a
black-box module-based visual editor added a layer of abstraction that made it difficult
for participants to understand how the information sources were consumed by the
modules (see Section 5.1)

As the foregoing discussion shows, the difficulties faced by participants when debug-
ging motivates efforts to create additional debugging support for mashup programming
environments.

RQ3: Comparing End-User and Computer Science Participants
To address our third research question, we considered the time required to perform

reuse and debugging tasks with and without versioning, and the correctness of results
in those contexts, as it relates to differences observed between computer science and
end-user participants.

The results of our analysis (at α = 0.05) show that the main effects of expertise for
correctness (p = 0.1530) and time (p = 0.4453) measures were not significant. This
indicates that computer science and end users did not significantly differ in terms of
the correctness of the pipes they created during the reuse and debugging tasks. There
was also no difference in the time costs. These results indicate that versioning was
beneficial to both computer science and end users equally. Therefore, we focus only on
qualitative differences observed in the behaviors of the two classes of participants.

Comparing CSE and EU Behavior While Reusing with Versioning
The details about mean correctness scores and time-to-completion for CSE partic-

ipants and EU participants are provided in Table IX. Despite the lack of computer
science background, EU participants produced pipes of quality comparable to those
created by CSE participants when using versioning.

We found that EU participants were more open to seeking help from versioning
support (viewing prior versions), whereas CSE participants (perhaps due to higher

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:25

Table X. Mean (Median) Correctness and Time Taken Scores for Debugging Task

Correctness Time (mins)
Ctrl Exp Ctrl Exp

CSE 55.8% (60.0%) 80.0% (100.0%) 18.6 (17.6) 11.9 (10.4)
EU 50.8% (60.0%) 67.1% (67.5%) 22.4 (18.1) 20.5 (17.6)

self-efficacy) attempted to resolve problems on their own through trial and error. Only
9 of 12 CSE participants used versioning support. CSE participants preferred to create
pipes from scratch and hence spent more time and effort in creating them. Therefore,
it seems that versioning support can help end users learn by providing examples of
correct structure and use.

We also observed that EU participants repetitively referred to example pipes to
perform their tasks. Providing a means for users to refer to and execute prior versions of
pipes while not losing their changes can, therefore, benefit end users. CSE participants,
in contrast, were better at understanding example pipes and referred back to the given
pipes fewer times than their EU counterparts.

Comparing CSE and EU Behavior While Debugging with Versioning
Table X provides the mean correctness scores and times-to-completion for the debug-

ging tasks between CSE and EU participants.
We observed that all 12 CSE participants used the History of Pipe list to visually

identify the modules that could be erroneous, whereas EU participants inspected and
executed individual versions from that list. Hence, in the Experimental group, CSE
participants were able to isolate problem modules and debug them to arrive at correct
pipes with far fewer instances of executing pipe versions. We also found that EU
participants needed to spend more time debugging that CSE participants to arrive at
the correct output even after isolating the problem modules. Another difference is that
CSE participants primarily used runtime observations to arrive at correct outputs,
whereas EU participants also relied heavily on help mechanisms.

5. A QUALITATIVE ANALYSIS OF THE USE OF VERSIONING

One of the key goals of our study was to evaluate the usefulness of versioning support
in the domain of mashup creation. Since ours is one of the first attempts we are aware
of to study versioning support in an end-user domain, we wanted to qualitatively
investigate the role and impact of versioning in enabling users to reuse and debug
programs in a web mashup domain, namely Yahoo! Pipes. Our qualitative analysis
provides insights into the challenges that users face when reusing and debugging
pipes and the usefulness of versioning in overcoming these challenges. Our overall
goal was to investigate the following research question:

—RQ: How can versioning benefit programmers in (1) reducing learning barri-
ers, (2) helping them reuse parts of pipes, and (3) improving their debugging
performance?

We analyzed the results of our experiments by first transcribing the experiment
videos and interviews. We then coded the transcripts using three primary code
sets: (1) programming barriers that participants faced while performing their tasks
(Table XI), (2) reuse activities (Table XIII), and (3) debugging strategies (Table XV).
We describe these code sets in the following sections. For each code set, two of the au-
thors coded small portions of the transcripts independently and compared intercoder
agreement until they reached an 80% agreement covering at least 20% of the tran-
scripts. Once such an agreement was achieved, the first author coded all the remaining

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:26 S. K. Kuttal et al.

Table XI. Programming Barriers Adapted from Ko et al. [2004a] and Cao et al. [2010b]

Barriers Definition Example

Understanding Not knowing why the program
behaved the way it did

User is unable to understand the type
of error and its cause when viewing
the output (of a module) in the
debugger window

Use Not knowing how to use a
module

User did not know how to set
parameters in the loop module

Coordination Not knowing how to connect
modules

User tries to connect text input
module with count module, which
are incompatible because of
incompatible output and input types

Selection Not knowing which module to
use for a particular behavior

User incorrectly selects rename instead
of string replace module while
appending a prefix to titles of search
result

Design Not knowing how to frame the
problem and arrive at a
solution

User performs more work than needed,
by removing all previously modules
added and starting from scratch

transcripts. We used the Qualyzer16 tool to code the transcripts and aggregate the
codes.

The results of this qualitative analysis are divided into three sections. Section 5.1
investigates the programming barriers defined by Ko et al. [2004a] as they apply to
Yahoo! Pipes. It then discusses activities that participants performed to overcome those
barriers. Note that this section includes observations across both studies (Studies I and
II) and both tasks. Section 5.2 explores reuse activities performed in Task 2 in both
studies. Section 5.3 discusses debugging strategies used by study participants (Task 2
in Study II). Because Study I did not differentiate between EU and CSE participants,
participants in this study are referred to as P[x], whereas participants in Study II are
referred to as EU[x] or CSE[x].

5.1. Programming Barriers

Prior studies of end users creating mashups have led to the observation that users
faced significant challenges [Cao et al. 2010b]. In our study, we wished to determine
whether similar challenges existed in Yahoo! Pipes. Further, we wanted to understand
whether knowledge of the provenance of a pipe and the ability to revert to an earlier
successful version of a pipe would reduce some of the challenges.

5.1.1. Programming Barriers and Versioning Support. Ko et al. [2004a] identify six types
of programming barriers that end users might face when programming in a new en-
vironment. Five of these have previously been identified by Cao et al. [2010b] to be
present in the mashup domain (information barriers were not observed to be present).
Table XI lists the five barriers, which include understanding, use, coordination, se-
lection, and design; it also provides definitions and examples. We analyzed instances
where participants faced problems using Yahoo! Pipes and classified each instance with
the type of barrier (Table XII). We then investigated the occurrences of each barrier
to gain insights into the challenges that participants faced and the strategies that
they used to overcome the barriers. Our discussion of barriers is ordered based on the
frequency with which these barriers were encountered.

There was a greater incidence of the first four barriers than of design barriers. This
was an artifact of our task design. Design barriers occur primarily when users try to

16Qualyzer: http://qualyzer.bitbucket.org/#home.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

http://qualyzer.bitbucket.org/#home

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:27

Table XII. Instances of Learning Barriers with and
without Versioning

Instances of Learning Barriers
Barriers Ctrl Exp

Understanding 135 84
Use 44 51
Coordination 37 16
Selection 31 26
Design 7 6
Total 254 183

formulate (design) a solution to a problem. Our tasks did not require participants to
create a pipe from scratch; instead, our participants were given a pipe that they could
reuse in Task 1 (Studies I and II) and a faulty pipe that they needed to debug in Task 2
(Study II). Because we saw few instances of design barriers, we do not discuss them
further here.

Understanding barriers occur when a program’s externally visible behavior ob-
scures what the program does (or does not do) during execution. Yahoo! Pipes allows
users to check the output of an entire pipe by clicking on the “output” module as well
as the output of a single module individually. The debugger window found at the bot-
tom of the editor interface (Figure 2) displays the results of the pipe (or the module).
However, we found that the feedback provided was not self-explanatory. For example,
participant EU12 in the Control group (Task 1) incorrectly used the URL for the Fetch
feed module, and as a result, there was no output for any of the subsequent modules.
However, there was no error information provided to notify him that the problem was
in the input sources. EU12 ended up checking the output of each module (3–4 times) in
the debugger window because of his inability to understand why there was no output
from any modules. He ended up checking the output of modules for the entire pipe a
total of 54 times but was not able to identify the error or its location.

A majority of participants had trouble understanding feedback when it was available.
In fact, understanding barriers were the largest barrier faced by participants in both
the Control and Experimental groups (135/254 and 84/183, see Table XII). Prior work
has found understanding barriers to be the most difficult for users to overcome, calling
them “insurmountable” [Ko et al. 2004b]. Therefore, it is pertinent to understand why
these barriers occur and possible solutions.

We found that understanding barriers were reduced by 37.7% (from 135 instances
to 84) in the presence of versioning support. There are two primary reasons for this
reduction. First, participants who had versioning support needed to investigate fewer
modules when they performed Task 2 in Study II, which required participants to debug
two faulty modules. In the Control group, participants had no idea which modules were
faulty and ended up having to check each module in the Pipe. In contrast, participants
in the Experimental group were able to view the history of development and reduce the
evaluation space; that is, they could identify the modules that were non-buggy (already
checked and providing correct output) and focus on checking the rest. As a result, they
investigated fewer modules and, therefore, faced fewer instances of understanding
barriers. For example, although participant EU12, when working in the Experimental
group, followed the same approach he had followed when working in the Control group
(checking the output of each module that he needed to investigate), he needed to check
the debugger window only 12 times instead of 54 times.

A second cause for the reduction in understanding barriers can be attributed to
Task 1 in Study II, which required participants to comprehend the example pipe to be
able to reuse parts of it in their tasks. On analyzing the participants’ behavior, we found

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:28 S. K. Kuttal et al.

that participants in the Experimental group faced fewer barriers because they could
trace the evolution of the pipe and understand the functionality of each module and its
aggregated effects on the pipe as each module was added (in the past). They could also
note the output of the pipe or any selected module in prior (successful) versions. We
posit that with the help of versioning, participants could comprehend the functionality
of modules better and were better positioned to complete their “implementation” task.

Use barriers are caused by a lack of understanding of how to use a particular piece
of code or module, and these posed the next largest challenge for participants (95/437,
adding the use barrier instances across treatment groups in Table XII). For example,
participant EU7 was frustrated when he tried to use the loop module to rename the
titles of the feed. He spent 8.20 minutes experimenting with the loop module to make
it work correctly, but was unsuccessful. We found that many participants had problems
with this module, because it required a nested operation. That is, the operation that
needs to be performed iteratively (string replace) had to be nested within the loop
module. In general, participants generally had difficulty recognizing the functionality
of modules in Yahoo! Pipes and the documentation/help provided by Yahoo! Pipes was
inadequate.

We found that participants in the Experimental group actually exhibited a slightly
greater incidence of this barrier (51 vs. 44 in Table XII). Versioning did not help partici-
pants because they faced use barriers when they tried to add new functionality, and the
two modules that needed to be added were not part of the original pipe. Therefore the
ability to view the history of development or having access to prior successful versions
was not useful.

Coordination barriers were the next most prevalent type of barrier (53/437, adding
relevant instances in Table XII). Such barriers are usually caused by a programming
language’s inherent limitations on how interfaces and individual programming units
can be combined to perform complex functionalities [Ko et al. 2004a]. In our case,
this problem occurred primarily when participants tried to (1) connect incompatible
modules or (2) connect modules incorrectly.

We found coordination barriers to be more than halved in the presence of versioning
support (16 vs. 37 instances, see Table XII). We found that coordination barriers were
lower in the Experimental group because participants could view examples of how
modules are supposed to be connected by viewing prior successful versions of the pipe.
For example, participant EU4 in Task 2 tried to connect incompatible modules (the
number input module which takes a “number” as input to the truncate module which
takes “items” as input). He did not know why he was unable to connect them and
commented, “Oh! It didn’t connect . . . this is interesting.” He then went back to an
earlier version of the pipe to view an example of how these modules were connected.
After observing the connections in the older version, he was able to successfully connect
the modules and complete his task correctly.

Selection barriers were the next most prevalent type of barrier faced by partic-
ipants (57/437, see Table XII). These barriers are caused when a user is unable to
identify the correct programming interface and how to achieve the correct behavior for
a given program unit. In our situation, participants faced this problem primarily in the
reuse task (Task 1, Studies I and II), where they needed to add new functionality that re-
quired the addition of two new modules. Many participants had difficulty selecting the
correct Yahoo! Pipes module to implement the functionality. For example, in Task 1, par-
ticipants were required to rename the titles of the search results to titles of their choice.
To do so, they needed to use the operator string replace that replaces one string with
another; however, many participants selected the wrong module (rename). In Yahoo!
Pipes, the renamemodule is used to define mapping rules of different input formats (e.g.,
map input parameters to RSS formats). We found that participants made this mistake

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:29

because (1) the rename module appears before the string replace module in the list
of available actions and (2) string replace is a computer science term that end users
are not familiar with. For example, participant EU6 had this problem when he used
the rename module and could not identify the correct module to use even after checking
the help facility, which includes definitions of modules and examples of their use.

There was a small reduction in selection barriers when participants had versioning
support. We found that this reduction was not attained when participants needed
to add new functionality. Instead, the reduction occurred primarily in situations in
which participants creating pipes began from scratch or incorrectly removed modules
that they should have reused. In such cases, participants in the Control group faced
selection barriers when they needed to figure out which modules to use, the actual
behavior of those modules, and the correct usage of the modules. Participants in the
Experimental group, in contrast, could refer to prior successful states of the given pipe
to correctly use the module and therefore, faced fewer barriers. This is evident in cases
in which participants in the Control group explicitly asked the observer how they could
go back to a prior state. For example, participant EU6 asked the observer, “I cannot
rename the titles can I go back to the first one I had. . .?”

5.1.2. Overcoming Barriers through Versioning Support. We found that versioning support
helped participants overcome some barriers. Ko et al. [2004a] note that the program-
ming barriers faced by users arise as a result of Norman’s “gulf of execution” (the
difference between users’ intentions and actions available through the system) and
“gulf of evaluation” (the effort to determine whether a desired goal has been achieved).
Coordination and use barriers pose gulf of execution problems, understanding barriers
pose gulf of evaluation problems, and selection barriers pose both gulf of execution and
gulf of evaluation problems.

Here, we investigate how versioning support helped bridge the different gulfs and
thereby alleviated barriers. Norman [1996] recommends bridging gulfs of execution
by establishing visible constraints on the actions that are possible. Following this
reasoning, coordination barriers can be reduced when implicit rules connecting modules
have explicit representations. We believe that versioning support—and especially the
ability to view prior versions—allowed participants to see how particular modules
were connected, making the connection rules more explicit. For example, participant
P6 commented, “It is easy to look at a partial part of the pipe in the versioning rather
than looking at the entire pipe. It is easy to go back to the previous versions.”

Similarly, use barriers can be alleviated if users can find examples of usage of
difficult-to-use modules. For example, we have already noted that many participants
had difficulty determining how to correctly use the loop module. Using versioning
histories to provide examples of correct implementations can alleviate this problem.

To overcome gulfs of evaluation, Norman [1996] recommends that the current sys-
tem state be accessible and understandable to users. While Yahoo! Pipes provides the
ability to determine the output of a pipe at each module (clicking on the module lists the
output in the debugger window), we found it to be insufficient. In fact, understanding
barriers that were a result of gulf of evaluation problems posed the largest challenge
for participants. While versioning support cannot directly help bridge the gulf of eval-
uation, the ability to view the provenance of a pipe and the output of each successful
version helped to an extent. For example, a participant (EU10) noted, “I liked being
able to see in a step-by-step manner in which it (the pipe) was created (which) made it
easy to find the error.”

Finally, selection barriers that pose both gulfs can be alleviated if users can view
how complex functionalities can be implemented in Yahoo! Pipe modules. We did not
include such a scenario in our study; participants faced the selection barriers when

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:30 S. K. Kuttal et al.

Table XIII. Reuse Activities Adapted from Rosson and Carroll [1996]

Reuse Activities Definition Example

Finding a Usage Context Finding the correct example
pipe to reuse from

(none observed)

Evaluating a Usage Context Assessing the appropriateness
of the modules for reuse

A user selected (cloned) an
appropriate version from the
History of Pipe list as a
starting point for creating his
pipe

Debugging a Usage Context Modifying the modules for reuse
to fit task context

User began by executing the
pipe to understand its
functionality and modified the
pipe to add additional
functionality

they needed to implement new functionality by implementing two new modules. Still,
we believe that versioning support can help users by mining different examples of
implementations of such functionalities from the repository history.

5.2. Reuse

Reuse has been found to be a primary mechanism by which end users create new
programs [Cypher et al. 2010]. In fact, a study of the Yahoo! Pipes repository that
surveyed 32,887 pipes found that a majority of pipes (17,874%–54.35%) were cloned, of
which a large portion (43%) were highly similar to each other [Stolee et al. 2011]. This
suggests that finding an example pipe and reusing parts of the pipe is a fairly common
occurrence in the Yahoo! Pipes community. However, reuse is no easy task, even for
professional developers [Rosson and Carroll 1996]. Therefore, we wanted to investigate
how end users perform reuse in Yahoo! Pipes and whether versioning support can help.
Task 1 in both studies (Study I and II) required participants to reuse parts of a given
pipe. Here we report on our observations of participants’ reuse actions. We frame our
observations on reuse (as originally defined) by Rosson and Carroll [1996] in their
study of reuse in SmallTalk.

5.2.1. Reuse and Versioning Support. Rosson and Carroll [1996] identify three primary
activities that users perform when they attempt reuse: finding a usage context, evaluat-
ing a usage context, and debugging a usage context. Table XIII presents the three reuse
activities, their definitions within the context of our study, and an example of each.

Finding a usage context: Finding the correct usage context is the first step in
reuse and relates to users locating the correct example with which to begin their reuse
task. However, because in Yahoo! Pipes the majority of users create their pipes by
cloning an existing pipe, our primary goal was to investigate how users understood
the functionalities of the example pipe to create their own. In our study, we provided
participants with an example pipe because we were not investigating how they identify
the correct example.

Evaluating a usage context: The second step in reuse activities includes evalu-
ating the appropriateness of the example to the task at hand. This activity includes
executing the sample code and assessing the similarity of its functionality to the func-
tionality required to complete the task. Similar to the study by Rosson and Carroll
[1996], our task provided participants with a working (example) pipe that included
components (modules) to be reused so that participants could easily execute the pipe
to understand the functionality of the modules. Since the example pipe contained only
a subset of modules that could be reused, participants needed to evaluate the context
in which these modules were used and determine their appropriateness.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:31

Participants used three options to evaluate usage context: (1) modify the example
pipe by removing or adding modules, (2) create a clone of the pipe and then modify
the clone, and (3) start a pipe from scratch. A majority of the participants began by
modifying the given pipe directly, while a few participants followed the latter two
strategies.

We found versioning support to be useful in helping participants evaluate the us-
age context of a module. For example, to evaluate the need for a particular module,
participants in the Control group removed modules that they thought were irrelevant.
However, many times they performed this step incorrectly. Because of this, participants
needed to remember which modules they had removed and how to correctly connect
those modules to the rest of the pipe. We observed that several participants struggled
and were frustrated when they made erroneous decisions and wanted to revert to the
original pipe to view it. In these cases, they viewed the original pipe by opening a new
instance of the Yahoo! Pipes environment, viewing the example pipe and correcting
their error. One participant, in fact, created a screen shot of the original pipe and re-
ferred to it when constructing the pipe. However, in the case of the Experimental group,
participants could simply revert to a previous version (before they had removed the
modules) or the original pipe through the History of Pipe list. For example, participant
P3 commented, “Having versioning helps to see small building blocks makes it easy
to see the entire picture. In the future, modifying/editing having all versions will be
helpful.”

Another instance in which versioning support was found to be useful involved cases
in which participants viewed the provenance of the pipe to determine the correct point
from which to begin their reuse work. That is, participants viewed the evolution history,
found the version that had the majority of the functionality that was needed, executed
that version to evaluate the appropriateness of the modules, and then cloned that
version of the pipe for reuse. For example, participant P4 noted: “You can see how each
pipe was developed along the way to final product.” However, a side effect of providing
information on the provenance of the pipe was that participants selected and executed
every version in the history before they settled on the version from which to begin
their reuse; this caused participants in the Experimental group to take extra time to
complete their task.

Debugging a usage context: The final step in reuse includes users tweaking the
reusable components to fit the context of their current task. In their study, Rosson
and Carroll [1996] noted that upon finding an example component (in the Smalltalk
library), programmers immediately moved into code development to try out that ex-
ample. Their primary goal was to analyze the example component to understand how
it would work for the new context and write new code by using the example compo-
nent as a model. Once the component was plugged into the new context, they would
analyze the workings of the reused component and any new code through testing. This
method of development is termed “debugging into existence.” We observed a similar
trend with participants performing incremental development (one module at a time)
and interleaving exploration of the modules in the given pipe with code development
(bringing in a reusable module, modifying it, then testing it). The result was a highly
contextualized, incremental analysis of the example application, and tightly integrated
analysis and code development phases.

Participants in our study primarily analyzed Yahoo! Pipe modules by running the
pipe and checking the output in the debugger window. When performing code develop-
ment, however, they followed three distinct strategies: (1) exploring alternative ideas,
(2) backtracking their changes, and (3) investigating prior successful states. We ana-
lyzed the study results to identify instances of each strategy (see Table XIV).

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:32 S. K. Kuttal et al.

Table XIV. Instances of Explore Mechanisms Seen during Pipe
Creation, with and without Versioning

Percentage of Instances
Explore of Explore Used

Ctrl Exp

Alternative Ideas 80 38
Backtracking 74 36
Successful State 0 44
Total 154 118

Exploring Alternative Ideas. This strategy involves participants exploring different
options to create a new functionality or remove an error. An example of this strategy
was observed when participant CSE3 in Study II attempted to rename the news titles
to his desired titles using the string replace module. When that did not provide the
correct output, he explored using the rename module instead, so he removed the string
replace module and connected the loop module with the rename module. However, that
resulted in an error (incorrect use of loop module). He then tried different methods
(spending 7.5 minutes) for connecting the two modules.

Participants in the Control group exhibited more instances of exploring alternative
ideas (80 vs. 38, see Table XIV). This was primarily because participants in the Control
group ended up reinvestigating some of the strategies that they had already attempted
because they did not retain any explicit account of the strategies (the information
resided in their heads). In contrast, participants in the Experimental group could
identify the strategies that they had already investigated (modules added or removed)
through the History of Pipe list.

Backtracking. We labeled activities as backtracking when participants explicitly re-
verted their changes because the line of development that they were pursuing was
not fruitful. Participants backtracked primarily because of selection and use barriers.
In our earlier example, when participant CSE3 realized that the rename module was
incorrect, he backtracked through his changes to investigate the use of the string re-
place module again. He realized that the problem was not in the module but how it was
connected. He commented, “Ummm, actually it was working with the string replace,
now trying to figure out how to get that to work [in a loop].”

We found participants in the Control group to have greater instances of backtracking
(74 vs. 36, see Table XIV). We found that participants in both groups made erroneous
changes or changes that led to different results than what was expected. In such
situations, they would revert their changes. The primary reason less backtracking
was observed for the Experimental group was that participants better understood the
functionality of modules in the given pipe and hence were able to correctly reuse the
needed modules. They backtracked primarily when they were adding new modules
(additional functionality). In contrast, participants in the Control group backtracked
through their changes for additional modules as well as modules that were being
reused.

Investigating Past Successful States. Since we recorded the version history of the
given pipe as well as changes made by participants, they could execute any previous
successful state in the development history. We identified instances in which partici-
pants in the Experimental group opened and executed a version of the example pipe
(not including their changes) to understand how the development history of a pipe
can aid in reuse. Such an example occurred when CSE2 (in Study II), while exploring
how to use the string replace module in a loop module, remembered that the loop
module was used in the sample pipe. He saved his current version, identified the prior

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:33

version that he wanted to view, and opened that version in the editor. He then tested
that version to understand the workings of the particular module, and after he was
satisfied, he simply reverted to his latest version to resume his work. In contrast, a
participant in the Control group who wanted to view the modules in the original pipe
would have to open another instance of the Yahoo! Pipes environment. If they needed
to understand the effects of a particular module, they needed to manually isolate the
workings of the modules of interest and then restore the original pipe—an error-prone
and tedious activity.

5.2.2. Enhancing Reuse through Versioning. In our study, versioning support allowed par-
ticipants to better understand the given pipe and the context in which modules of
that pipe were used, which in turn helped them complete their reuse task with less
backtracking or exploration of alternative ideas. However, versioning support was also
useful when participants were adding extra functionality. We found that participants
who had versioning support were more adventurous and explored more modules than
those who did not, because they knew they could revert to an earlier state. For example,
participant EU7, who was in the Control group after previously being in the Experi-
mental group, created a set of changes while under the impression that the changes
were being saved as versions. After a while, EU7 wanted to revert to an earlier stage of
his pipe (program). However, because he was in the Control group, this was not possible
through the interface, which led him to comment, “I don’t have option for going back to
an earlier version? So how should I know that it [what he has recently created] has an
error?” There were other participants who explicitly requested versioning help while
performing their reuse tasks. For example, when EU8 wanted to revert to his earlier
changes, he asked, “Where is the undo window?”

5.3. Debugging

Debugging is an integral part of programming. Studies have shown that professional
developers [Rosson and Carroll 1996] as well as students [Fitzgerald et al. 2010] spend
significant portions of their time debugging. End users are no different. A study by Cao
et al. [2010b] observed that end users creating mashups spent a significant portion
of their time (76.3%) in debugging. These results indicate that debugging is not easy
and should be better supported in programming environments. Since debugging is an
essential activity, one of our goals was to observe the challenges that participants face
when debugging in Yahoo! Pipes and how versioning support helps in debugging. We
frame our observations by using the classification framework of debugging strategies
first proposed by Grigoreanu et al. [2009], which was later used by Cao et al. [2010a]
in their mashup study.

5.3.1. Debugging and Versioning Support. Table XV lists the different debugging strate-
gies that participants used in our study and the definitions and examples of each
strategy contextualized for our study. Table XVI displays the numbers of instances of
each strategy observed in our study, with and without the use of versioning. We dis-
cuss the strategies that we observed in the order of their occurrence. In our ensuing
discussion, we specify how versioning influenced debugging strategies.

Feedback following is defined as run time observation of program behavior. In
Yahoo! Pipes, users can observe program behavior by viewing the output of an indi-
vidual module or the entire pipe in the debugger window. However, we found that the
feedback provided was insufficient. We have already noted that EU participants had
trouble identifying problems when there was no feedback to follow. While versioning
support cannot directly help users overcome this problem, it can be helpful in situations
where the user can refer back to a correct example.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:34 S. K. Kuttal et al.

Table XV. Debugging Strategies Adapted from Grigoreanu et al. [2009] and Cao et al. [2010a]

Debugging Strategy Definition Example

Feedback Following Investigating system
generated feedback in
the debugger window

User uses translate module to
translate English feeds to Greek. He
selects the translate module and
observes the output in the debugger
window.

Code Inspection Inspecting modules in a
pipe and pipe logic

User sequentially inspects each
module of a pipe while
understanding or debugging her
pipe.

Testing Testing a module by
trying different input
values

User supplies different “movie names”
as input while running his pipe to
test the correctness of the pipe.

Dataflow Explicitly tracing data
dependencies through a
pipe

User had trouble understanding the
top-down dataflow of the pipe as he
tried to connect the “sort” module to
the “union” module.

Proceed as in Prior Experience Referring to a code
snippet encountered in
prior task or example
pipe

While performing Task 2, user
encounters loop module that he
encountered earlier (in Task 1). He
first consults usage of loop module
in Task 1 before completing Task 2.

Table XVI. Debugging Strategies with and without Versioning

Instances of Debugging Strategies
Debugging Ctrl Exp

Feedback Following 463 218
Code Inspection 87 97
Testing 85 52
Dataflow 13 5
Proceed as Prior Exp. 22 6
Total 680 378

Code Inspection in Yahoo! Pipes involved participants scrutinizing the mashup
logic, such as the functionality of modules, the parameter settings of modules, and
the connections (wires) between modules. Participants traced the logic of each module
by following the input and output of modules and their connections. Since modules
in Yahoo! Pipes serve as black-box entities, participants attempted to understand the
logic within a module by using help (tool tips or clicking the “?” icon) or checking the
module’s output. We found code inspection to be performed equally frequently across
the treatment groups, the only difference being that participants in the Experimental
group used the History of Pipe list to identify correct/tested versions and perform code
inspection on those versions.

Testing is a critical step in debugging that involves isolating the parts of a program
that could be faulty and then testing it to help identify the specific fault. In our studies,
participants tried different approaches for doing this, but the most common involved
isolating a module and testing it in isolation. A majority of participants used this
approach in Task2.movie (aggregating movie reviews), which involved information from
three different feeds combined together through a union module.

Participants in the Experimental group were able to reduce the amount of testing
needed by identifying the modules that had already been tested from the History
of Pipe list. While this helped participants identify the faulty modules, they did not

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:35

always know how to debug them, which accounts for the large number of testing steps
required by EU participants. For example, participant EU11 was able to correctly a
faulty module through the History of Pipe list, but unable to correct the fault. She
remarked, “There is an error in truncate [module]. I do not know how to fix it.”

Dataflow dependencies is primarily construct in Yahoo! Pipes because it is a data-
driven environment. The spatial layout of the pipe typically reflects the dataflow, with
modules laid out vertically and the output of a module (at a higher level) serving as an
input to a module at a lower level. An incorrect understanding of the dataflow led to
coordination barriers. Versioning support indirectly helped in these cases where past
correct examples could be viewed. Still, some participants had trouble understanding
the dataflow in the given pipes, and versioning support was not helpful when par-
ticipants had issues understanding the dataflow concept. Providing examples of how
specific modules are connected could alleviate this; dataflow problems are dynamic and
depend on inputs and cannot be alleviated by simply viewing a static picture of a pipe.
Rather, a dynamic view of the data processing and flow needs to be made explicit.

Proceed as in prior experience is a strategy in which participants refer to their
prior experiences in building a similar application to help them in their current task.
In our study the versioning history served as an external experience repository. Some
participants viewed their earlier tasks or the given (earlier) sample pipes to complete
their current task. For example, when participant EU4 in his second task was trying
to connect two incompatible modules and was unable to do so, he remembered that he
had used similar modules in his earlier task and opened the earlier pipes that he had
completed. After checking the structure and connection logic in one of the examples,
he was able to correctly connect the modules in his current pipe.

5.3.2. Enhancing Debugging through Versioning. The greatest debugging assistance pro-
vided by versioning was allowing participants to reduce the testing space. That is,
participants in the Experimental group could easily identify the parts of the pipes
that had already been tested and were therefore correct, so they needed to debug only
parts of pipes. While versioning cannot directly help users debug a pipe, it can provide
examples of correct usage of modules that can serve as a reference. Users can test each
module as it was added during development to identify problem spots and focus their
debugging efforts on those spots.

5.4. Summary

Here, we summarize our qualitative results with respect to how versioning support
helped participants overcome learning barriers, reuse parts of pipes, and perform
debugging.

We found that our participants faced several learning barriers. Understanding bar-
riers were the most prominent, followed by use, coordination, and selection barriers.
We also observed that end users faced these learning barriers to a greater degree than
their more experienced (CSE) counterparts.

We found that versioning helped reduce understanding barriers because participants
could view the provenance of their pipes and selectively execute prior versions, which
helped them comprehend the functionality of the pipes in an incremental fashion.
Use, coordination, and selection barriers, which all deal with correctly identifying the
appropriate module to use and connecting it correctly, did not receive direct help from
versioning support. However, versioning support did help reduce these barriers when
participants could find previous examples of modules, the manner in which they were
used (e.g., parameters used), and their connections (e.g., wiring between them).

In the case of reuse, we found that versioning support allowed participants to cor-
rectly comprehend the functionality of pipes by observing how they evolved (using the

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:36 S. K. Kuttal et al.

History of Pipe list). Furthermore, we found that in the Experimental group, where ver-
sions were automatically created, participants were able to revert back from mistakes
and as a result were less risk averse in their explorations. Another indirect benefit of
versioning was that strategies that had already been employed (and their results) were
explicitly visible in relation to pipes; this led participants to perform less backtracking
and to avoid re-implementing failed strategies.

In the case of debugging, participants largely followed code inspection and testing
strategies. In these cases, version histories for pipes as well as results pertaining to
executions of versions (erroneous or tested) helped reduce the evaluation space for
participants. That is, participants needed to check fewer modules, because some had
already been tested.

6. DISCUSSION AND IMPLICATIONS

In this section, we provide a general discussion of our study and results and then
suggest several further implications.

6.1. Discussion

As we have noted, web mashups are an important class of software system, popular
among end users and with support via several different mashup programming envi-
ronments, most of which provide visual interfaces. As noted by others, and as reflected
in the findings presented in this article, end-user programming mashups tend to em-
ploy opportunistic programming, tend to rely heavily on reuse of existing mashups,
and can often be seen to debug their programs into existence. End users currently
engage in these behaviors, however, in an ad-hoc manner, and mashup environments
do not necessarily support these activities to the extent they could. Moreover, mashup
programmers face several programming barriers, including understanding, use, coor-
dination, and selection barriers.

In this work, we studied the use of versioning support in mashup programming en-
vironments, focusing on the Yahoo! Pipes platform, to determine whether that support
can help end users in their programming tasks. Our results reveal that, indeed, ver-
sioning support can be useful to both end user and more sophisticated programmers
working in the Yahoo! Pipes context. In particular, versioning support can help with
the very reuse and debugging activities that these programmers engage in and can
alleviate some of the programming barriers that they face.

To provide versioning support, we studied the features of versioning systems avail-
able to professional programmers. To better conceptualize versioning support in the
Yahoo! Pipes environment itself, we considered various user scenarios. We mapped
various tasks performed by users to versioning system concepts. Based on these map-
pings, we prototyped and implemented the versioning system for Yahoo! Pipes using a
visual interface. Automating support for versioning was important in this context, as it
allowed us to retain versions and present information about versions to users without
requiring them to learn formal versioning system concepts.

The “History of Pipe” list is a primary component of our versioning support, allowing
users to view versions, differences between them, and status on their operational
status. We chose to show modules as the basic variation unit for displaying differences
between pipes, in part because the average size of pipes has been shown to be relatively
small, in the range of six to eight modules [Stolee et al. 2011]. This notion could be
extended, however, to include other components of variation such as connectors or
parameters.

Web mashup creation involves collecting data, manipulating data, and building in-
terfaces [Zang and Rosson 2008]. We designed our experiment tasks to allow us to
observe the last two of these activities, as these require problem solving and creativity.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:37

We also used common data sources such as news, blogs, shopping, and movies in our
tasks. We used sample pipes from the Yahoo! Pipes repository and created versions of
those pipes. We selected modules to include in versions based on our understanding
of the functionality found in different variations of pipes (generated by us). For our
experimental group, there were six versions for Task 1 and seven versions for Task 2,
along with their execution histories. These assumptions may not reflect a variation
space in real life, because users may tend to create far more variations.

The primary lessons derived from our studies relate to programming strategies,
debugging strategies, and the use of examples.

The presence of versioning helped our participants in programming by allowing
them to explore various variations of pipes. Participants with versioning support were
less risk averse while creating mashups, and this helped them experiment with and
choose between different ideas, aided by the ability to return to prior successful and
unsuccessful changes. This approach fits nicely with the processes of opportunistic
programming and programming by successive refinement.

Our study participants also debugged mashups through a process that included
successive refinements. Providing versioning support helped the participants do this,
because they could look for prior successful strategies and avoid prior unsuccessful
strategies. Further, the “History of Pipe” list helped participants focus their debugging
efforts, effectively reducing the evaluation space they needed to explore.

Finally, programmers (end users and nonalike) are known to learn from examples
[Lieberman et al. 2006], and our study participants were no exception in this respect.
With versioning support, our participants were able to rely not only on examples found
in the repository, but also on prior versions of pipes. When participants had difficulties
understanding how a module worked or needed to be connected with other modules,
they preferred to look at older versions in which that module was used and implement
similar features in their current pipe.

6.2. Implications

Our qualitative analysis prompts us to suggest several implications for ways in which
mashup programming environments can be improved; these involve providing better
feedback, support for visualizations, testing and debugging support, and recommenda-
tion systems.

6.2.1. Providing Better Feedback. We found that a large number of the programming
barriers faced by our study participants were caused because of poor feedback and help
functionality provided by Yahoo! Pipes. The largest barriers (understanding) arose be-
cause participants could not understand the runtime feedback or error messages. Pro-
viding explicit feedback in a language that is accessible to end users can reduce such
understanding barriers. Improved documentation will also help with understanding,
use, and selection barriers. Similarly, built-in examples may help users understand the
general usage of modules and reduce both use and coordination barriers. Improved tool
tip help functionality could provide quicker access to documentation, as we found par-
ticipants to overwhelmingly prefer help within the environment to help found outside.

Better feedback in the form of visual cues that build on intuitive color and visual
concepts could also help users be more effective in creating wire-oriented mashups.
For example, we observed that our study participants tended to follow the color inter-
pretations that we use in daily life (e.g., green depicts go, red means error/danger),
and these are not consistently used in Yahoo! Pipes. For example, Yahoo! Pipes high-
lights the module that is under inspection (or being debugged) in orange, and some
participants had difficulty determining whether this color should be seen as an error

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:38 S. K. Kuttal et al.

or a warning sign. For instance, one of the EU participants asked, “Why is the module
orange? Does it mean I have an error?”

6.2.2. Supporting Exploration through Better Visualizations. End-user activities like oppor-
tunistic programming, debugging into existence and reuse tend to create large numbers
of variations of programs. We have supported users’ explorations among variations
through the “History of Pipe” list. Better visualizations are needed, however, to facili-
tate exploration.

For example, our versioning interface could be enhanced to provide more intuitive
views of versioning history and differences. Current source code revision tools provide
editors that allow users to compare source files side by side [Heckel 1978]. We could
implement a similar editor in which versions of pipes could be shown side by side,
with differences highlighted. Furthermore, we currently display a linear history of the
evolution of pipes; this could be improved to show relationships in a graphical manner.

There is also a need to identify visual features and appropriate levels of abstraction
in the end-user environment to help users leverage information on variations. Using an
appropriate level of visualization will help users explore variations or view all variants
at once. For example, we expect that the appropriate level of abstraction for a user
while viewing variants in their current work space will be a fine-grained view (similar
to that of the History of Pipe list, while a coarse-grained view (e.g., family tree) may be
better while viewing all variants of a program in the repository.

6.2.3. Supporting Testing and Debugging. There is a need for better testing tech-
niques and better debugging tools to help programmers create dependable mashups.
Grammel and Storey [2008] have stressed the need for such techniques, and our ob-
servations underscore this need. In our studies, participants had difficulty locating
the sources of errors and engaged in testing activities in an ad-hoc manner. Support
for more rigorous testing and debugging methodologies could help users attain more
dependable mashups. Support for better error reporting could also help users assess
and correct problems that occur. Testing and debugging techniques created to assist
end-user programmers such as “Whyline” [Ko and Myers 2004] and WYSIWYT [Fisher
et al. 2006] may be of further help. Finally, once pipes have been constructed and made
available to the community, the community itself may be of help. Social recommenda-
tion systems like “HelpMeOut” that help users debug error messages by suggesting
solutions that peers have applied in the past are known to be helpful [Hartmann et al.
2010b].

6.2.4. Creating Recommendation Systems for Finding and Using Artifacts. Learning by exam-
ples has been shown to be an effective technique for end users [Lieberman et al. 2006].
A large percentage of programs in Yahoo! Pipes are clones (or pipes that have been
reused) [Stolee et al. 2011]; thus, recommendation systems that identify syntactically
and semantically similar pipes can help end users in their development efforts. Keeping
histories and versions in pipe repositories will assist the creation of recommendation
systems. Information on usage patterns and the evolution of mashups can be used to
recommend more fine-grained mashup components than can currently be identified by
users. Furthermore, because version histories are capable of capturing the successful
and unsuccessful states of mashups, more stable and correct versions can be recom-
mended. Finally, social recommendation systems that can connect novices with the
creators of example pipes can allow users to learn from the community.

We also believe that recommendation systems that guide users in their attempts
to use modules in Yahoo! Pipes will help alleviate learning barriers. By considering
modules in terms of their structures and parameters, such recommendation systems
should be able to suggest not only entire pipes as sources for information but also

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:39

modules and parameters. In summary, recommendation systems should be able to
connect users with the information they need to build dependable pipes more efficiently
and effectively.

7. RELATED WORK

Here we discuss related work on end users and mashups, followed by work on version-
ing, histories, and visualizations.

7.1. End Users and Mashups

There has been quite a bit of recent research related to mashups. Zang and Rosson
[2008] investigate the types of information that users encounter and the interactions
between information sources that they find useful in relation to mashups. The authors
also examine data gathering and integration [Zang and Rosson 2009] and discuss
results of a study of web users, focusing on their perceptions of what mashups could
do for them and how they might be created. They also note that, when asked about the
mashup creation process, end users could not even describe them in terms of the three
basic steps of collecting, transforming, and displaying data.

There has been recent research aimed at understanding the programming practices
and hurdles that mashup programmers face in mashup building. Cao et al. [2010b]
discuss problem solving attempts and barriers that end users face while working
with mashup environments, and describe a “design-lens methodology” to view pro-
gramming. Cao et al. [2010a] also study a debugging perspective on end-user mashup
programming.

Researchers have also empirically studied the Yahoo! Pipes environment itself in
order to understand the programming practices and issues faced by end users and their
communities. Jones and Churchill [2009] describe various issues faced by end users
while developing web mashups using the Yahoo! Pipes environment. They observe the
conversations of the users in discussion forums in order to understand the practices
followed, problem solving tactics employed, and collaborative debugging engaged in by
these online communities of end users.

Dinmore and Boylls [2010] empirically studied end-user programming behaviors
in the Yahoo! Pipes environment. They observe that most users sample only a small
fraction of the available design space, and simple models describe their composition
behaviors. They also find that users attempt to minimize the degrees of freedom asso-
ciated with a composition as it is built and used.

Stolee et al. [2011] analyzed a large set of pipes to understand the trends and be-
haviors of end users and their communities. They observe that end users employ the
repository in different ways than professionals, do not effectively reuse existing pro-
grams, and are not aware of the community. In another study [Stolee and Elbaum
2011], they classified various “smells” (programming errors) found in Yahoo! Pipes and
devised refactoring techniques that can be used to remove those smells from the pipes.

7.2. Versioning, Histories, and Visualization

Versioning has been the subject of substantial prior work. Versioning capabilities are
heavily used in commercial software development and are required for a team to be
successful. Versioning is used by professional developers to keep track of changes
(theirs and others), share or benchmark the latest versions of their code, or revert their
changes [Tichy 1985]. Tools such as diffIE have been used to keep track of changes
in webpages [Teevan et al. 2009, 2010]. Our versioning capabilities also allow end
users to keep track of changes and revert their changes. In addition, we allow users to
benchmark significant events as an aid in debugging mashups.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:40 S. K. Kuttal et al.

History mechanisms such as undo or “time travel” enable revisitation of earlier ver-
sions in a variety of applications [Berlage 1994; Derthick and Roth 2001; Edwards et al.
2000; Meng et al. 1998]. History tools can play an important part in visualization pro-
cesses, supporting iterative analysis by enabling users to review, retrieve, and revisit
visualization states. Graph visualizations can help to present, manage, and export his-
tories [Eric et al. 1995; Heer et al. 2008; Hightower et al. 1998; Kaasten and Greenberg
2001; Klemmer et al. 2002].

There has been some work in revision control on visual interfaces specifically meant
for capturing design histories. This includes work related to revision histories and
determining differences between UML diagrams [Chen et al. 2003; Ohst et al. 2003],
CASE diagrams [Mehra et al. 2005], and statecharts [Schipper et al. 2009]. To facili-
tate design, some tools to track and visualize changes exist [Hartmann et al. 2010a].
Our work differs from these in two aspects: (1) these revision control mechanisms are
used for designing software or visual media (WYSIWYG document editors, movie pro-
ducers, and video game developers), whereas our work targets mashups; and (2) these
mechanisms are built for designers, whereas our target population is end users.

Some end-user environments such as Google Docs and Google Websites provide basic
versioning facilities to enable group editing, but these capabilities are only for text
edits. These environments also allow versions to be created on each save. In these
environments, however, the versions are represented only with version numbers of
files. In contrast, our versioning support is more fine-grained, providing a list-view of
each pipe that helps end users view pipe constructs (module names) in the order in
which they were added to the pipe canvas.

8. CONCLUSION

In this article, we presented our Pipes Plumber extension to Yahoo! Pipes, which pro-
vides versioning support for mashup programmers using that environment. Our em-
pirical results studying the use of that environment in mashup creation and debugging
tasks provide evidence that our versioning support can help mashup programmers
create and debug mashups, and this includes both individuals who have formal pro-
gramming experience and those who do not. Our qualitative analysis reveals additional
insights into the ways in which versioning addresses barriers faced by mashup pro-
grammers, reuse problems, and problems in debugging.

It would be useful to extend our environment to provide further visualization support
to mashup programmers. In particular, methods for presenting version histories in
forms such as family tree–like structures may provide an appealing metaphor for end
users. As discussed in Section 7, various visual representations for viewing the histories
of graphs or documents have been suggested in prior work (e.g., [Eric et al. 1995; Heer
et al. 2008; Hightower et al. 1998; Kaasten and Greenberg 2001; Klemmer et al. 2002;
Woodruff et al. 2001]). There has also been work in the web domain on methods for
keeping histories of the webpages visited and visual ways for depicting these histories
[Jatowt et al. 2008]. This prior work may provide useful mechanisms for use in mashup
programming environments. It would also be useful to conduct additional studies of
our versioning approach, in particular using larger pipe artifacts, and considering
longer-term scenarios in which participants construct pipes and versions over extended
periods of time.

ACKNOWLEDGMENTS

We thank Branden Barber and Amanda Swearngin for helping transcribe recording sessions of the par-
ticipants and helping with the grading task. We thank Margaret Burnett for her feedback. We thank the

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:41

anonymous reviewers and the associate editor for comments and suggestions that substantially improved
the article. We also thank our study participants.

REFERENCES

Thomas Berlage. 1994. A selective undo mechanism for graphical user interfaces based on command objects.
Transactions on Computer Human Interaction 1, 3 (September 1994), 269–294.

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. 2009. Opportunistic
programming: Writing code to prototype, ideate, and discover. IEEE Software 26, 5 (September 2009),
18–24.

Jill Cao, Kyle Rector, Thomas H. Park, Scott D. Fleming, Margaret Burnett, and Susan Wiedenbeck. 2010a.
A debugging perspective on end-user mashup programming. In Proceedings of the IEEE Symposium on
Visual Languages and Human-Centric Computing. 149–156.

Jill Cao, Yann Riche, Susan Wiedenbeck, Margaret Burnett, and Valentina Grigoreanu. 2010b. End-user
mashup programming: Through the design lens. In Proceedings of the ACM Conference on Human
Factors in Computing Systems. 1009–1018.

Ping Chen, Matt Critchlow, Akash Garg, Chris Van Der Westhuizen, and André Van Der Hoek. 2003. Software
Product-Family Engineering. Springer Verlag, 269–281.

Ron Cody. 1988. SAS Workbook. Vol. 1. SAS Publishing.
Allen Cypher, Mira Dontcheva, Tessa Lau, and Jeffrey Nichols. 2010. No Code Required: Giving Users Tools

to Transform the Web. Morgan Kaufmann.
Mark Derthick and Steven F. Roth. 2001. Enhancing data exploration with a branching history of user

operations. In Knowledge Based Systems. 65–74.
Matthew D. Dinmore and C. Curtis Boylls. 2010. Empirically-observed end-user programming behaviors in

Yahoo! Pipes. In Psychology of Programming Interest Group.
Shirley Dowdy, Stanley Wearden, and Daniel Chilko. 2004. Statistics for Research, 3rd ed. Wiley.
W. Keith Edwards, Takeo Igarashi, Anthony LaMarca, and Elizabeth D. Mynatt. 2000. A temporal model

for multi-level undo and redo. In Proceedings of the ACM Symposium on User Interface Software and
Technology. 31–40.

May Eric, Eric Z. Ayers, and John T. Stasko. 1995. Using graphic history in browsing the world wide web. In
International World Wide Web Conference. 11–14.

Marc Fisher, Gregg Rothermel, Darren Brown, Mingming Cao, Curtis R. Cook, and Margaret Burnett.
2006. Integrating automated test generation into the WYSIWYT spreadsheet testing methodology. ACM
Transactions on Software Engineering and Methodology 15 (April 2006), 150–194.

Sue Fitzgerald, Renée McCauley, Brian Hanks, Laurie Murphy, Beth Simon, and Carol Zander. 2010. De-
bugging from the student perspective. Transactions on Education 53, 3 (April 2010), 390–396.

Lars Grammel and Margaret-Anne Storey. 2008. An End User Perspective on Mashup Makers. Technical
Report DCS-324-IR. Department of Computer Science, University of Victoria.

Valentina Grigoreanu, James Brundage, Eric Bahna, Margaret M. Burnett, Paul Elrif, and Jeffrey Snover.
2009. Males’ and Females’ Script Debugging Strategies. In Proceedings of the International Symposium
on End-User Development. 205–224.

Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R. Klemmer. 2010a. d.note:
revising user interfaces through change tracking, annotations, and alternatives. In Proceedings of the
ACM Conference on Human Factors in Computing Systems. 493–502.

Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010b. What would other pro-
grammers do: suggesting solutions to error messages. In Proceedings of the ACM Conference on Human
Factors in Computing Systems. 1019–1028.

Paul Heckel. 1978. A technique for isolating differences between files. Commun. ACM 21, 4 (April 1978),
264–268.

Jeffrey Heer, Jock D. Mackinlay, Chris Stolte, and Maneesh Agrawala. 2008. Graphical histories for vi-
sualization: Supporting analysis, communication, and evaluation. Transactions on Visualization and
Computer Graphics 14 (November 2008), 1189–1196.

Ron R. Hightower, Laura T. Ring, Jonathan I. Helfman, Benjamin B. Bederson, and James D. Hollan. 1998.
PadPrints: Graphical multiscale web histories. In Proceedings of the ACM Symposium on User Interface
Software and Technology. 58–65.

Angus F. M. Huang, Shin Bo Huang, Evan Y. F. Lee, and Stephen J. H. Yang. 2008. Improving end-user
programming with situational mashups in Web 2.0 environments. In IEEE International Symposium
on Service-Oriented System Engineering. 62–67.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

9:42 S. K. Kuttal et al.

Adam Jatowt, Yukiko Kawai, Hiroaki Ohshima, and Katsumi Tanaka. 2008. What can history tell us?:
Towards different models of interaction with document histories. In Proceedings of the Hypertext and
Hypermedia. 5–14.

Michael Jones and Christopher Scaffidi. 2011. Obstacles and opportunities with using visual and domain-
specific languages in scientific programming. In Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. 9–16.

M. Cameron Jones and Elizabeth F. Churchill. 2009. Conversations in developer communities: A preliminary
analysis of the Yahoo! Pipes community. In Proceedings of the International Conference on Communities
and Technologies. 51–60.

Shaun Kaasten and Saul Greenberg. 2001. Integrating back, history and bookmarks in web browsers. In
Extended Abstracts on Human Factors in Computing Systems. 379–380.

Scott R. Klemmer, Michael Thomsen, Ethan Phelps-Goodman, Robert Lee, and James A. Landay. 2002.
Where do web sites come from?: capturing and interacting with design history. In Proceedings of the
ACM Conference on Human Factors in Computing Systems. 1–8.

Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris
Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary
Shaw, and Susan Wiedenbeck. 2011. The state of the art in end-user software engineering. Comput.
Surveys 43, 3 (April 2011), 21:1–21:44.

Andrew J. Ko and Brad A. Myers. 2004. Designing the whyline: a debugging interface for asking questions
about program behavior. In Proceedings of the ACM Conference on Human Factors in Computing Systems.
151–158.

Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. 2004a. Six learning barriers in end-user programming
systems. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing.
199–206.

Andrew J. Ko, Brad A. Myers, and Htet H. Aung. 2004b. Six learning barriers in end-user programming
systems. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing.
199–206.

Sandeep Kaur Kuttal, Anita Sarma, and Gregg Rothermel. 2011a. History repeats itself more easily when
you log it: Versioning for mashups. In Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing. 69–72.

Sandeep Kaur Kuttal, Anita Sarma, Amanda Swearngin, and Gregg Rothermel. 2011b. Versioning for
mashups—An exploratory study. In Proceedings of the International Symposium on End-User Devel-
opment. 25–41.

Clayton H. Lewis. 1982. Using the “Thinking Aloud” Method In Cognitive Interface Design. RC 9265. IBM.
Henry Lieberman, Fabio Paterno, and Volker Wulf. 2006. End User Development. Vol. 9. Springer

Netherlands.
Akhil Mehra, John Grundy, and John Hosking. 2005. A generic approach to supporting diagram differencing

and merging for collaborative design. In Proceedings of the International Conference on Automated
Software Engineering. 204–213.

Chii Meng, Motohiro Yasue, Atsumi Imamiya, and Xiaoyang Mao. 1998. Visualizing Histories for Selective
Undo and Redo. In Proceedings of the ACM Conference on Human Factors in Computing Systems. 459–
464.

Don Norman. 1996. The Psychology of Everyday Things. Vol. 1. Basic Books.
Dirk Ohst, Michael Welle, and Udo Kelter. 2003. Differences between versions of UML diagrams. In Pro-

ceedings of the International Symposium on the Foundations of Software Engineering. 227–236.
Mary Beth Rosson and John M. Carroll. 1993. Active programming strategies in reuse. In Proceedings of the

7th European Conference on Object-Oriented Programming. Springer-Verlag, London, UK, 4–20.
Mary Beth Rosson and John M. Carroll. 1996. The reuse of uses in Smalltalk programming. Transactions on

Computer Human Interaction 3, 3 (September 1996), 219–253.
Christopher Scaffidi, Mary Shaw, and Brad A. Myers. 2005. Estimating the numbers of end users and end

user programmers. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing. 207–214.

Arne Schipper, Hauke Fuhrmann, and Reinhard von Hanxleden. 2009. Visual Comparison of Graphical
Models. In Proceedings of the International Conference on Engineering of Complex Computer Systems.
335–340.

Katie Stolee, Sebastian Elbaum, and Anita Sarma. 2011. End-User programmers and their communities:
An artifact-based analysis. In Proceedings of the International Symposium on Empirical Software En-
gineering and Measurement. 147–156.

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

On the Benefits of Providing Versioning Support for End Users: An Empirical Study 9:43

Kathryn T. Stolee and Sebastian Elbaum. 2011. Refactoring pipe-like mashups for end-user programmers.
In Proceedings of the International Conference on Software Engineering. 81–90.

Jaime Teevan, Susan T. Dumais, and Daniel J. Liebling. 2010. A longitudinal study of how highlighting
web content change affects people’s web interactions. In Proceedings of the ACM Conference on Human
Factors in Computing Systems. 1353–1356.

Jaime Teevan, Susan T. Dumais, Daniel J. Liebling, and Richard L. Hughes. 2009. Changing how people view
changes on the web. In Proceedings of the ACM Symposium on User Interface Software and Technology.
237–246.

Walter F. Tichy. 1985. RCS-A system for version control. Software: Practice & Experience 15, 7 (July 1985),
637–654.

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and Anders Wesslén. 2000.
Experimentation in Software Engineering: An Introduction. Springer.

Allison Woodruff, Andrew Faulring, Ruth Rosenholtz, Julie Morrsion, and Peter Pirolli. 2001. Using thumb-
nails to search the Web. In Proceedings of the ACM Conference on Human Factors in Computing Systems.
198–205.

Nan Zang and Mary B. Rosson. 2008. What’s in a mashup? And why? Studying the perceptions of web-active
end users. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing.
31–38.

Nan Zang and Mary B. Rosson. 2009. Playing with information: How end users think about and integrate
dynamic data. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Com-
puting. 85–92.

Received October 2013; revised December 2013; accepted December 2013

ACM Transactions on Computer-Human Interaction, Vol. 21, No. 2, Article 9, Publication date: February 2014.

